如圖1,若順次連接四邊形ABCD各邊中點多的四邊形EFGH是矩形,則稱原四邊形ABCD為“中母矩形”即若四邊形的對角線互相垂直,那么這個四邊形稱為“中母矩形”.
(1)如圖2,在直角坐標(biāo)系xOy中,已知A(4,0),B(1,4),C(4,6),請在格點上標(biāo)出D點的位置(只標(biāo)一點即可),使四邊形ABCD是中母矩形.并寫出點D的坐標(biāo).
(2)如圖3,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于點O,試判斷四邊形BEGC是中母矩形?說明理由.
(3)如圖4,在Rt△ABC中,AB=8,BC=6,E是斜邊AC的中點,F(xiàn)是直角邊AB的中點,P是直角邊BC上一動點,試探究:當(dāng)P在BC邊上什么位置時,四邊形BPEF是中母矩形?


【考點】四邊形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:140引用:1難度:0.9
相似題
-
1.(1)如圖1,在四邊形ABCD中,∠B=∠C=90°,點E是邊BC上一點,AB=EC,BE=CD,連接AE、DE.判斷△AED的形狀,并說明理由;
(2)在平面直角坐標(biāo)系中,已知點A(2,0),點B(5,1),點C在第一象限內(nèi),若△ABC是等腰直角三角形,求點C的坐標(biāo);
(3)如圖2,在平面直角坐標(biāo)系中,已知點A(0,1),點C是x軸上的動點,線段CA繞著點C按順時針方向旋轉(zhuǎn)90°至線段CB,連接BO、BA,則BO+BA的最小值是 .發(fā)布:2025/6/8 23:30:1組卷:886引用:3難度:0.3 -
2.如圖,四邊形ABCD中,已知∠BAC=∠BDC=90°,且AB=AC.
(1)求證:∠ABD=∠ACD;
(2)記△ABD的面積為S1,△ACD的面積為S2.
①求證:S1-S2=AD2;12
②過點B作BC的垂線,過點A作BC的平行線,兩直線相交于M,延長BD至P,使得DP=CD,連接MP.當(dāng)MP取得最大值時,求∠CBD的大?。?/h2>發(fā)布:2025/6/8 23:0:1組卷:308引用:4難度:0.1 -
3.如圖,正方形ABCD中,AE=BF.
(1)求證:△BCE≌△CDF;
(2)求證:CE⊥DF;
(3)若CD=6,且DG2+GE2=41,則BE=.發(fā)布:2025/6/8 23:30:1組卷:360引用:3難度:0.6
相關(guān)試卷