綜合與實踐
問題情境:數(shù)學(xué)活動課上,王老師出示了一個問題:如圖1,在△ABC中,點D在AC邊上,AE⊥BD于F交BC于E,∠ABD=2∠CAE.求證AB=BD.
獨立思考:(1)請解答王師提出的問題.
實踐探究:(2)在原有問題條件不變的情況下,王老師增加下面條件,并提出新問題,請你解答.“如圖2,作EG⊥AC于點G,若AE=BD,探究線段AD與CE之間的數(shù)量關(guān)系,并證明.”
問題解析:(3)數(shù)學(xué)活動小組同學(xué)對上述問題進行特殊化研究之后發(fā)現(xiàn),當(dāng)點G與點D重合時,連接CF,若給出DE的值,則可求出CF的值.該小組提出下面的問題,請你解答.”
如圖3,在(2)的條件下,當(dāng)點D與點G重合時,連接CF,若DE=5,求CF的長”.

5
【考點】三角形綜合題.
【答案】(1)證明見解答.
(2)AD=CE.
(3)CF=.
(2)AD=
2
(3)CF=
13
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 4:30:1組卷:905引用:1難度:0.2
相似題
-
1.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點P從點A出發(fā)沿線段AB以每秒3個單位長的速度運動至點B,過點P作PQ⊥AB交射線AC于點Q,設(shè)點P的運動時間為t秒(t>0).
(1)線段AQ的長為 ,線段PQ的長為 .(用含t的代數(shù)式表示)
(2)當(dāng)△APQ與△ABC的周長的比為1:4時,求t的值.
(3)設(shè)△APQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關(guān)系式.發(fā)布:2025/6/25 4:0:1組卷:19引用:1難度:0.3 -
2.已知等腰直角△ABC的直角邊AB=BC=10cm,點P,Q分別從A.C兩點同時出發(fā),均以1cm/s的相同速度做直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設(shè)P點運動時間為t,△PCQ的面積為S.
(1)求出S關(guān)于t的函數(shù)關(guān)系式.
(2)當(dāng)點P在線段AB上時,點P運動幾秒時,S△PCQ=S△ABC?14
(3)作PE⊥AC于點E,當(dāng)點P.Q運動時,線段DE的長度是否改變?證明你的結(jié)論.發(fā)布:2025/6/23 23:0:10組卷:243引用:1難度:0.1 -
3.如圖,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于點O,BD:CD=2:3,且AE=BE.
(1)求線段AO的長;
(2)動點P從點O出發(fā),沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發(fā)沿射線BC以每秒4個單位長度的速度運動.P,Q兩點同時出發(fā),當(dāng)點P到達A點時,P,Q兩點同時停止運動.設(shè)點P的運動時間為t秒,△AOQ的面積為S,請用含t的式子表示S,并直接寫出相應(yīng)的t的取值范圍;
(3)在(2)的條件下,點F是直線AC上的一點,且CF=BO,是否存在t值,使以點B,O,P為頂點的三角形與以點F,C,Q為頂點的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.發(fā)布:2025/6/25 5:0:1組卷:191引用:3難度:0.4
相關(guān)試卷