綜合與實踐
如圖,二次函數(shù)y=-x2+c的圖象交x軸于點A、點B,其中點B的坐標為(2,0),點C的坐標為(0,2),過點A、C的直線交二次函數(shù)的圖象于點D.
(1)求二次函數(shù)和直線AC的函數(shù)表達式;
(2)連接DB,則△DAB的面積為 66;
(3)在y軸上確定點Q,使得∠AQB=135°,點Q的坐標為 (0,22-2)或(0,2-22)(0,22-2)或(0,2-22);
(4)點M是拋物線上一點,點N為平面上一點,是否存在這樣的點N,使得以點A、點D、點M、點N為頂點的四邊形是以AD為邊的矩形?若存在,請你直接寫出點N的坐標;若不存在,請說明理由.
2
2
2
2
【考點】二次函數(shù)綜合題.
【答案】6;(0,2-2)或(0,2-2)
2
2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/26 10:30:2組卷:310引用:1難度:0.2
相似題
-
1.已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正
半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個根,且拋物線的對稱軸是直線x=-2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.發(fā)布:2025/5/28 2:30:1組卷:587引用:65難度:0.1 -
2.已知拋物線y=x2+px+q上有一點M(x0,y0)位于x軸的下方.
(1)求證:拋物線必與x軸交于兩點A(x1,0)、B(x2,0),其中x1<x2;
(2)求證:x1<x0<x2;
(3)當點M為(1,-1997)時,求整數(shù)x1、x2.發(fā)布:2025/5/28 2:0:5組卷:254引用:1難度:0.5 -
3.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點,與y軸相交于點C.連接AC、BC,A、C兩點的坐標分別為A(-3,0)、C(0,
),且當x=-4和x=2時二次函數(shù)的函數(shù)值y相等.3
(1)求實數(shù)a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動.當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,二次函數(shù)圖象的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?如果存在,請求出點Q的坐標;如果不存在,請說明理由.發(fā)布:2025/5/28 1:30:2組卷:1106引用:26難度:0.1