如圖,在平面直角坐標(biāo)系中,點A、C分別在x軸上、y軸上,CB∥OA,OA=10,若點B的坐標(biāo)為(m,n),且(m-6)2+n-6=0.
(1)求點A、B、C的坐標(biāo);
(2)若動點P從原點O出發(fā)沿x軸正半軸以每秒1個單位長度的速度向右運動,設(shè)點P運動的時間為t秒,求t為何值時,直線PC把四邊形OABC分成面積為3:5的兩部分;
(3)在(2)的條件下,當(dāng)直線PC把四邊形OABC分成面積相等的兩部分時,在y軸上找一點Q,連接PQ,使三角形CPQ的面積與四邊形OABC的面積相等,求點Q的坐標(biāo).
?
(
m
-
6
)
2
+
n
-
6
=
0
【考點】四邊形綜合題.
【答案】(1)A(10,0),B(6,6),C(0,6);(2)t=6或10;(3)(0,-2)或(0,14).
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/3 8:0:9組卷:44引用:1難度:0.5
相似題
-
1.如圖,矩形ABCD中,AB=4,AD=8,E在AD上,DE=3,點P從點B出發(fā),以每秒1個單位長度的速度沿著BC邊向終點C運動,連接PE,設(shè)點P運動的時間為t秒.
(1)過P作PF⊥AD,垂足為F,用含t的式子表示:EF=,PC=;
(2)當(dāng)t=2時,判斷△PEC是否是直角三角形,并說明理由;
(3)當(dāng)∠PEC=∠DEC時,求t的值.發(fā)布:2025/6/8 12:30:1組卷:43引用:3難度:0.4 -
2.如圖,在正方形ABCD中,AB=BC=CD=AD=6,∠A=∠B=∠BCD=∠ADC=90°,將一直角三角板放在正方形ABCD上,使三角板的直角頂點與D點重合,三角板的一邊交AB于點P,另一邊交BC的延長線于點Q,如圖1所示.
(1)求證:DP=DQ;
(2)如圖2,在圖1的基礎(chǔ)上作∠PDQ的平分線DE交BC于點E,連接PE,請你猜想PE和QE存在何種數(shù)量關(guān)系,并予以證明;
(3)如圖3,固定三角板直角頂點在D點不動,轉(zhuǎn)動三角板使三角板的一邊交AB的延長線于點P,另一邊交BC的延長線于點Q,仍作∠PDQ的平分線DE交BC的延長線于點E,連接PE,若BP=2,求△DCE的面積.發(fā)布:2025/6/8 12:30:1組卷:58引用:1難度:0.2 -
3.(1)感知:如圖,分別以△ABC的三邊為邊長,在BC邊的同側(cè)分別作三個等邊三角形,即△ABD,△BCE,△ACF,連接DE、EF,試猜想四邊形ADEF的形狀,并證明你的猜想.
(2)應(yīng)用:當(dāng)△ABC中有AB=AC時,四邊形ADEF的形狀是 .
(3)探究:①四邊形ADEF是否隨著△ABC形狀的改變而永遠(yuǎn)存在,簡要說明理由;
②如果四邊形ADEF是正方形,則△ABC應(yīng)滿足什么條件?
(4)若AB=4,AC=3,BC=5,求四邊形AFED的面積.發(fā)布:2025/6/8 12:30:1組卷:66引用:2難度:0.3