如圖,AB∥CE,∠A=∠E.求證:∠CGD=∠FHB.
證明:∵AB∥CE(已知)
∴∠A=∠ADC∠ADC( 兩直線平行,內(nèi)錯(cuò)角相等兩直線平行,內(nèi)錯(cuò)角相等)
∵∠A=∠E (已知)
∴∠ADC∠ADC=∠E∠E( 等量代換等量代換)
∴ADAD∥EFEF( 同位角相等,兩直線平行同位角相等,兩直線平行)
∴∠2=∠3∠3( 對(duì)頂角相等對(duì)頂角相等)
∵∠3=∠4 ( 兩直線平行,同位角相等兩直線平行,同位角相等)
∴∠2=∠4 ( 等量代換等量代換)
即∠CGD=∠FHB.
【考點(diǎn)】平行線的判定與性質(zhì).
【答案】∠ADC;兩直線平行,內(nèi)錯(cuò)角相等;∠ADC;∠E;等量代換;AD;EF;同位角相等,兩直線平行;∠3;對(duì)頂角相等;兩直線平行,同位角相等;等量代換
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/11 0:0:1組卷:105引用:2難度:0.5
相似題
-
1.完成下面的證明.
已知:如圖,AC⊥BD,EF⊥BD,∠A=∠1.求證:EF平分∠BED.
證明:∵AC⊥BD,EF⊥BD,
∴∠ACB=90°,∠EFB=90°.()
∴∠ACB=∠EFB.
∴.()
∴∠A=∠2.(兩直線平行,同位角相等)
∠3=∠1.()
又∵∠A=∠1,
∴∠2=∠3.
∴EF平分∠BED.發(fā)布:2025/6/12 0:0:1組卷:554引用:11難度:0.6 -
2.把下面的證明過(guò)程補(bǔ)充完整.
已知:如圖,∠1+∠2=180°,∠C=∠D
求證:∠A=∠F.
證明:∵∠1+∠2=180°(已知)
∴( )
∴∠C=∠ABD ( )
∵∠C=∠D(已知)
∴(等量代換)
∴AC∥DF ( )
∴∠A=∠F ( )發(fā)布:2025/6/11 22:30:1組卷:760引用:8難度:0.6 -
3.如圖,AB和CD相交于點(diǎn)O,EF∥AB,∠C=∠COA,∠D=∠BOD.試說(shuō)明:∠A=∠F.
解:∵∠C=∠COA,∠D=∠BOD( ),
又∵∠COA=∠BOD( ),
∴∠C=( ).
∴AC∥DF( ).
∴∠A=( ).
∵EF∥AB,
∴∠F=( ).
∴∠A=∠F( ).發(fā)布:2025/6/11 23:0:1組卷:404引用:2難度:0.7