試卷征集
加入會(huì)員
操作視頻

小紅在數(shù)學(xué)課上學(xué)習(xí)了角的相關(guān)知識(shí)后,立即對(duì)角產(chǎn)生了濃厚的興趣.她查閱書籍發(fā)現(xiàn)兩個(gè)有趣的概念,三角形中相鄰兩條邊的夾角叫做三角形的內(nèi)角;三角形一條邊的延長線與其鄰邊的夾角,叫做三角形的外角.小紅還了解到三角形的內(nèi)角和是180°,同時(shí)她很容易地證明了三角形外角的性質(zhì),即三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.于是,愛思考的小紅在想,三角形的內(nèi)角是否也具有類似的性質(zhì)呢?三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在怎樣的數(shù)量關(guān)系呢?

①嘗試探究:
(1)如圖1,∠1與∠2分別為△ABC的兩個(gè)外角,試探究∠A與∠1+∠2之間存在怎樣的數(shù)量關(guān)系?為什么?
解:數(shù)量關(guān)系:∠1+∠2=180°+∠A
理由:∵∠1與∠2分別為△ABC的兩個(gè)外角
∴∠1=180°-∠3,∠2=180°-∠4
∴∠1+∠2=360°-(∠3+∠4)
∵三角形的內(nèi)角和為180°
∴∠3+∠4=180°-∠A
∴∠1+∠2=360°-(180°-∠A)=180°+∠A
小紅順利地完成了探究過程,并想考一考同學(xué)們,請(qǐng)同學(xué)們利用上述結(jié)論完成下面的問題.
②初步應(yīng)用:
(2)如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,∠1=130°,則∠2-∠C=
50°
50°
;
(3)如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,則∠P與∠A有何數(shù)量關(guān)系?
∠A+2∠P=180°
∠A+2∠P=180°
.(直接填答案)
③拓展提升:
(4)如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,則∠P與∠1、∠2有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說明,可直接使用,不需說明理由.)

【考點(diǎn)】三角形綜合題
【答案】50°;∠A+2∠P=180°
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:436引用:4難度:0.1
相似題
  • 1.【問題呈現(xiàn)】某學(xué)校的數(shù)學(xué)社團(tuán)成員在學(xué)習(xí)時(shí)遇到這樣一個(gè)題目:
    如圖1,在△ABC中,AB>AC,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)E在DC的延長線上,過E作EF∥AB交AC的延長線于點(diǎn)F,當(dāng)BD:DE=1時(shí),試說明:AF+EF=AB;
    【方法探究】
    社團(tuán)成員在研究探討后,提出了下面的思路:
    在圖1中,延長線段AD,交線段EF的延長線于點(diǎn)M,可以用AAS明△ABD≌△MED,從而得到EM=AB…
    (1)請(qǐng)接著完成剩下的說理過程;
    【方法運(yùn)用】
    (2)在圖1中,若BD:DE=k,則線段AF、EF、AB之間的數(shù)量關(guān)系為
    (用含k的式子表示,不需要證明);
    (3)如圖2,若AB=7,EF=6,AF=8,BE=12,求出BD的長;
    【拓展提升】
    (4)如圖3,若DE=2BD,連接AE,已知AB=9,tan∠DAF=
    1
    2
    ,AE=2
    17
    ,且AF>EF,則邊EF的長=

    發(fā)布:2025/5/25 0:0:2組卷:320引用:4難度:0.2
  • 2.如圖,OC為∠AOB的角平分線,∠AOB=α(0°<α<180°),點(diǎn)D為射線OA上一點(diǎn),點(diǎn)M,N為射線OB上兩個(gè)動(dòng)點(diǎn)且滿足MN=OD,線段ON的垂直平分線交OC于點(diǎn)P,交OB于點(diǎn)Q,連接DP,MP.

    (1)如圖1,若α=90°時(shí),線段DP與線段MP的數(shù)量關(guān)系為

    (2)如圖2,若α為任意角度時(shí),(1)中的結(jié)論是否變化,請(qǐng)說明理由;
    (3)如圖3,若α=60°時(shí),連接DM,請(qǐng)直接寫出
    DM
    ON
    的最小值.

    發(fā)布:2025/5/25 1:0:1組卷:92引用:2難度:0.1
  • 3.在△ABC中,AB=BC,∠B=45°,AD為BC邊上的高,M為線段AB上一動(dòng)點(diǎn).
    (1)如圖1,連接CM交AD于Q,若∠ACM=45°,AB=
    2
    .求線段DQ的長度;
    (2)如圖2,點(diǎn)M,N在線段AB上,且AM=BN,連接CM,CN分別交線段AD于點(diǎn)Q、P,若點(diǎn)P為線段CN的中點(diǎn),求證:AQ+
    2
    CD=AB;
    (3)如圖3,若AD=4
    10
    ,當(dāng)點(diǎn)M在運(yùn)動(dòng)過程中,射線DB上有一點(diǎn)G,滿足BM=
    2
    DG,AG+
    5
    5
    MG的最小值.

    發(fā)布:2025/5/24 23:0:1組卷:102引用:1難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正