已知關(guān)于x的二次函數(shù)y1=x2+bx+c(實(shí)數(shù)b,c為常數(shù)).
(1)若二次函數(shù)的圖象經(jīng)過點(diǎn)(0,4),對稱軸為直線x=1,求此二次函數(shù)的表達(dá)式;
(2)若b=-(k+1),c=2k+3,則該拋物線的頂點(diǎn)隨著k的變化而移動,當(dāng)頂點(diǎn)移動到最高處時,求該拋物線的頂點(diǎn)坐標(biāo);
(3)記關(guān)于x的二次函數(shù)y2=2x2+x+m,若在(1)的條件下,當(dāng)0≤x≤1時,總有y2≥y1,求實(shí)數(shù)m的取值范圍.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/20 2:0:8組卷:337引用:4難度:0.5
相似題
-
1.我們不妨約定:在平面直角坐標(biāo)系中,若某函數(shù)圖象上至少存在不同的兩點(diǎn)關(guān)于y軸對稱,則把該函數(shù)稱之為“T函數(shù)”,其圖象上關(guān)于y軸對稱的不同兩點(diǎn)叫做一對“T點(diǎn)”.根據(jù)該約定,完成下列各題.
(1)若點(diǎn)A(1,r)與點(diǎn)B(s,4)是關(guān)于x的“T函數(shù)”y=的圖象上的一對“T點(diǎn)”,則r=,s=,t=(將正確答案填在相應(yīng)的橫線上);-4x(x<0)tx2(x≥0,t≠0,t是常數(shù))
(2)關(guān)于x的函數(shù)y=kx+p(k,p是常數(shù))是“T函數(shù)”嗎?如果是,指出它有多少對“T點(diǎn)”如果不是,請說明理由;
(3)若關(guān)于x的“T函數(shù)”y=ax2+bx+c(a>0,且a,b,c是常數(shù))經(jīng)過坐標(biāo)原點(diǎn)O,且與直線l:y=mx+n(m≠0,n>0,且m,n是常數(shù))交于M(x1,y1),N(x2,y2)兩點(diǎn),當(dāng)x1,x2滿足(1-x1)-1+x2=1時,直線l是否總經(jīng)過某一定點(diǎn)?若經(jīng)過某一定點(diǎn),求出該定點(diǎn)的坐標(biāo);否則,請說明理由.發(fā)布:2025/6/3 10:30:2組卷:4124引用:5難度:0.1 -
2.在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+4(a<0)的圖象與x軸交于點(diǎn)A(-2,0)和B(4,0),與y軸交于點(diǎn)C,直線BC與對稱軸交于點(diǎn)D.
(1)求二次函數(shù)的解析式;
(2)若拋物線y=ax2+bx+4(a<0)的對稱軸上有一點(diǎn)M,以O(shè)、C、D、M為頂點(diǎn)的四邊形是平行四邊形時,求點(diǎn)M的坐標(biāo).發(fā)布:2025/6/3 9:0:1組卷:465引用:3難度:0.5 -
3.如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+bx+c與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式.
(2)點(diǎn)D為第一象限內(nèi)拋物線上的一動點(diǎn),作DE⊥x軸于點(diǎn)E,交BC于點(diǎn)F,過點(diǎn)F作BC的垂線與拋物線的對稱軸和y軸分別交于點(diǎn)G,H,設(shè)點(diǎn)D的橫坐標(biāo)為m.
①求DF+HF的最大值;
②連接EG,是否存在點(diǎn)D,使△EFG是等腰三角形.若存在,直接寫出m的值;若不存在,說明理由.發(fā)布:2025/6/3 9:30:1組卷:475引用:2難度:0.2