2022-2023學(xué)年浙江省金華市武義縣九年級(上)期末數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、選擇題。(本題有10小題,每小題3分,共30分)
-
1.如圖,從熱氣球A看一棟大樓頂部B的仰角是( ?。?/h2>
組卷:157引用:1難度:0.5 -
2.下面圖形中,是直三棱柱的表面展開圖的是( ?。?/h2>
組卷:109引用:1難度:0.8 -
3.如圖,點A,B,C是⊙O上的點,若∠ACB=51°,則∠AOB的度數(shù)為( )
組卷:151引用:2難度:0.8 -
4.如圖,△ABC和△DEF是位似三角形,OD=3OA,△ABC的面積為2,則△DEF的面積為( ?。?/h2>
組卷:74引用:2難度:0.6 -
5.按小王、小李、小馬三位同學(xué)的順序從一個不透明的盒子中隨機抽取一張標(biāo)注“主持人”和兩張空白的紙條,確定一位同學(xué)主持班級“交通安全教育”主題班會.下列說法中正確的是( )
組卷:117引用:1難度:0.8 -
6.若點C是線段AB的黃金分割點,AC>BC,AB=8,則AC的長度為( )
組卷:125引用:1難度:0.8 -
7.如圖,一個蜂巢巢房的橫截面為正六邊形ABCDEF,若對角線AD的長約為10mm,則正六邊形ABCDEF的邊長為( ?。?/h2>
組卷:124引用:2難度:0.6 -
8.已知二次函數(shù)表達式為y=-(x+2)2-1,則下列結(jié)論中正確的是( ?。?/h2>
組卷:298引用:2難度:0.8
三、解答題。(本題有8小題,共66分,各小題都必須寫出解答過程)
-
23.如圖1,在菱形ABCD中,AB=5,
,點E從點A出發(fā)以每秒1個單位長度沿AB運動到點B,然后以同樣速度沿BC運動到點C停止.設(shè)當(dāng)點E的運動時間為x秒時,DE長為y.下面是小聰?shù)奶骄窟^程,請補充完整.cos∠ABD=35
(1)根據(jù)三角函數(shù)值小聰想到連結(jié)AC交BD于點O(如圖2),請同學(xué)們幫忙求BD的長;
(2)小聰學(xué)習(xí)了函數(shù)知識后,運用函數(shù)的研究經(jīng)驗,對y與x的變化規(guī)律進行了下列探究,根據(jù)點E在AB上運動到不同位置進行畫圖、測量,分別得到了y與x的幾組對應(yīng)值,并畫出了函數(shù)圖象(如圖3):x 0 1 2 3 4 5 y 5 4.82 4.84 5.06 5.46 6
(3)結(jié)合圖象探究發(fā)現(xiàn)y=5時,x有四個不同的值.求y取何值時,x有且僅有兩個不同的值.組卷:135引用:1難度:0.2 -
24.如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,△ABC是等腰直角三角形,點A,點B在x軸上(點A在點B的左側(cè)),點C在y軸的正半軸上,點D在直線BC上運動,連結(jié)AD與y軸交于點E,連結(jié)BE.
(1)當(dāng)點D從點C運動到點B(C,B兩點除外)時,求證:∠BEO=∠CED;
(2)如圖2,過B,D,E三點作⊙H與y軸的另一個交點為G,延長EH交⊙H于點F,連結(jié)GF,DG,BF.求∠EFG的度數(shù);
(3)在(2)的條件下,若AB=8,點D在運動過程中,△BEF中是否有一個角等于30°,如果存在,求出此時點E的坐標(biāo);如果不存在,請說明理由.組卷:150引用:1難度:0.2