定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.如圖1,∠ABC=∠ADC=90°,四邊形ABCD是損矩形,則該損矩形的直徑是線段AC.同時我們還發(fā)現(xiàn)損矩形中有公共邊的兩個三角形角的特點:在公共邊的同側(cè)的兩個角是相等的.如圖1中:△ABC和△ABD有公共邊AB,在AB同側(cè)有∠ADB和∠ACB,此時∠ADB=∠ACB;再比如△ABC和△BCD有公共邊BC,在CB同側(cè)有∠BAC和∠BDC,此時∠BAC=∠BDC.

(1)請在圖1中再找出一對這樣的角來:∠ABD∠ABD=∠ACD∠ACD.
(2)如圖2,△ABC中,∠ABC=90°,以AC為一邊向外作菱形ACEF,D為菱形ACEF對角線的交點,連接BD,當(dāng)BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.
(3)在第(2)題的條件下,若此時AB=6,BD=82,求BC的長.
2
【考點】四邊形綜合題.
【答案】∠ABD;∠ACD
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:576引用:6難度:0.3
相似題
-
1.如圖1,正方形ABCD中,AC為對角線,點P在線段AC上運動,以DP為邊向右作正方形DPFE,連接CE;
【初步探究】
(1)則AP與CE的數(shù)量關(guān)系是 ,AP與CE的夾角度數(shù)為 ;
【探索發(fā)現(xiàn)】
(2)點P在線段AC及其延長線上運動時,如圖1,圖2,探究線段DC,PC和CE三者之間的數(shù)量關(guān)系,并說明理由;
【拓展延伸】
(3)點P在對角線AC的延長線上時,如圖3,連接AE,若AB=,AE=22,求四邊形DCPE的面積.213發(fā)布:2025/5/26 8:0:5組卷:2163引用:9難度:0.3 -
2.閱讀與思考
平移是初中幾何變換之一,它可以將線段和角平移到一個新的位置,從而把分散的條件集中到一起,使問題得以解決.平移包括以下三個方面的應(yīng)用:一、分散的條件集中;二、復(fù)雜圖形變得簡單明了;三、轉(zhuǎn)化題目的形式.以下面例題來說明.
如圖1,在正方形中ABCD中,E,F(xiàn),G分別是BC,CD,AD上的點,GE⊥BF于點O,那么GE=BF.
證明過程如下:
∵GE⊥BF于點O,
∴∠GOB=90°,
過點A作AH∥GE交BC于點H,交BF于點M.
∴∠AMB=∠GOB=90°,
∴∠ABM+∠BAM=90°,
∵四邊形ABCD為正方形,
∴AG∥HE,AB=BC,∠ABC=∠C=90°,
∴∠ABM+∠FBC=∠ABC=90°,
∴∠BAM=∠FBC,
∴△ABH≌△BCF(依據(jù)1),
∴AH=BF,
∵AH∥GE,AG∥HE,
∴四邊形AHEG為平行四邊形(依據(jù)2),
∴AH=GE,
∴GE=BF.
【閱讀理解】填空:上述閱讀材料中“依據(jù)1”是 ,“依據(jù)2”是 .
【遷移嘗試】如圖2,在5×6的正方形網(wǎng)格中,點A,B,C,D為格點,AB交CD于點M.則∠AMC的度數(shù)為 ;
【拓展應(yīng)用】如圖3,點P是線段AB上的動點,分別以AP,BP為邊在AB的同側(cè)作正方形APCD與正方形PBEF,連接DE分別交線段BC,PC于點M,N.求∠DMC的度數(shù).發(fā)布:2025/5/26 9:0:1組卷:217引用:2難度:0.3 -
3.在正方形ABCD中,對角線AC、BD相交于點O,F(xiàn)是正方形ABCD內(nèi)一點,∠BFC=90°,將△BFC繞點C按順時針方向旋轉(zhuǎn)一定角度得到△DEC,點B、F的對應(yīng)點分別為點D、E,則直線EF經(jīng)過點O.
【方法感知】如圖①,當(dāng)點F在△AOB內(nèi)時,過點D作DG⊥DE交EF于點G,則∠DGE的大小為 度,DE、OE、OF的數(shù)量關(guān)系為 .
【類比遷移】如圖②,當(dāng)點F在△COD內(nèi)時,試判斷DE、OE、OF之間的數(shù)量關(guān)系,并說明理由.
【拓展應(yīng)用】如圖③,將正方形ABCD改為菱形,對角線AC、BD相交于點O,F(xiàn)是△COD內(nèi)一點,∠BFC=90°.若將△BFC繞點C按順時針方向旋轉(zhuǎn)60°得到△DEC,點B、F的對應(yīng)點分別為點D、E.若DE=2,則OE+OF=.2發(fā)布:2025/5/26 7:30:2組卷:160引用:1難度:0.3