【基礎(chǔ)鞏固】(1)如圖1,在矩形ABCD中,AD=5,CD=3,點(diǎn)E是AD上的一點(diǎn),連結(jié)CE,BD,若CE⊥BD,則CEBD的值為 3535;
【類比探究】(2)如圖2,在四邊形ABCD中,∠A=∠B=90°,AD=4,BC=7,CD=5,點(diǎn)E為AB上一點(diǎn),連結(jié)DE,過點(diǎn)C作DE的垂線交ED的延長線于點(diǎn)G,交AD的延長線于點(diǎn)F.求DECF的值;
【拓展延伸】(3)如圖3,在Rt△ABD中,∠BAD=90°,AB=2,AD=6,將△ABD沿BD沿折得△CBD,點(diǎn)E,F(xiàn)分別在邊AB,AD上,連結(jié)DE,CF,DE⊥CF,求DECF的值.

CE
BD
3
5
3
5
DE
CF
DE
CF
【考點(diǎn)】相似形綜合題.
【答案】
3
5
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:575引用:1難度:0.2
相似題
-
1.已知四邊形ABCD中,E、F分別是AB、AD邊上的點(diǎn),DE與CF交于點(diǎn)G.
問題發(fā)現(xiàn):
(1)①如圖1,若四邊形ABCD是正方形,且DE⊥CF于G,則=;DECF
②如圖2,當(dāng)四邊形ABCD是矩形時,且DE⊥CF于G,AB=m,AD=n,則=;DECF
拓展研究:
(2)如圖3,若四邊形ABCD是平行四邊形,且∠B+∠EGC=180°時,求證:;DECF=ADCD
解決問題:
(3)如圖4,若BA=BC=5,DA=DC=10,∠BAD=90°,DE⊥CF于G,請直接寫出的值.DECF發(fā)布:2025/5/23 23:30:1組卷:2292引用:6難度:0.3 -
2.[問題情境]
(1)王老師給愛好學(xué)習(xí)的小明和小穎提出這樣一個問題:如圖①,在△ABC中,AB=AC,P為邊BC上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點(diǎn)C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小明的證明思路是:
如圖②,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小穎的證明思路是:
如圖②,過點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
請你選擇小明、小穎兩種證明思路中的任意一種,寫出詳細(xì)的證明過程.
[變式探究](2)如圖③,當(dāng)點(diǎn)P在BC延長線上時,問題情境中,其余條件不變,求證:PD-PE=CF.
[結(jié)論運(yùn)用](3)如圖④,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C'處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE,PH⊥BG,垂足分別為G,H,若AD=8,CF=3,求PG+PH的值.
[遷移拓展](4)圖⑤是一個機(jī)器模型的截面示意圖,在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D,C,且AD?CE=DE?BC,AB=2cm,AD=3cm,BD=13cm,MN分別為AE,BE的中點(diǎn),連接DM,CN,請直接寫出△DEM與△CEN的周長之和.37發(fā)布:2025/5/24 0:30:1組卷:278引用:1難度:0.1 -
3.在矩形ABCD中,AB=2,AD=4,F(xiàn)是對角線AC上不與點(diǎn)A,C重合的一點(diǎn),過F作FE⊥AD于E,將△AEF沿EF翻折得到△GEF,點(diǎn)G在射線AD上,連接CG.
(1)如圖1,若點(diǎn)A的對稱點(diǎn)G落在AD上,∠FGC=90°,延長GF交AB于H,連接CH.
①求證:△CDG∽△GAH;
②求tan∠GHC.
(2)如圖2,若點(diǎn)A的對稱點(diǎn)G落在AD延長線上,∠GCF=90°,判斷△GCF與△AEF是否全等,并說明理由.發(fā)布:2025/5/23 23:0:1組卷:1132引用:5難度:0.3
相關(guān)試卷