[自主學(xué)習(xí)]
(1)如圖1,點C是∠MON的平分線OP上一點,點A在OM上,用圓規(guī)在ON上截取OB=OA,連接BC,可得△OAC≌△OBC△OBC,其理由根據(jù)是 SASSAS.
[理解運用]
(2)如圖2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,求證:BC=AC+AD.
[拓展應(yīng)用]
(3)如圖3,在四邊形ABDE中,AB=9,DE=1,BD=6,C為BD邊中點,若AC平分∠BAE,EC平分∠AED,∠ACE=120°,則AE的值為 1313.

【考點】四邊形綜合題.
【答案】△OBC;SAS;13
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/31 8:0:9組卷:59引用:1難度:0.3
相似題
-
1.(1)【問題發(fā)現(xiàn)】
如圖1,在Rt△ABC中,AB=AC,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關(guān)系為.
(2)【拓展探究】
在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),請判斷線段BE與AF的數(shù)量關(guān)系,并就圖2的情形說明理由.
(3)【問題解決】
當(dāng)AB=AC=2,且第(2)中的正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時,請直接寫出線段AF的長.發(fā)布:2025/5/24 21:30:1組卷:328引用:4難度:0.2 -
2.知識再現(xiàn):已知,如圖1,四邊形ABCD是正方形,點M、N分別在邊BC、CD上,連接AM、AN、MN,且∠MAN=45°,延長CB至G使BG=DN,連接AG,根據(jù)三角形全等的知識,我們可以證明MN=BM+DN.
知識探究:(1)如圖1,作AH⊥MN,垂足為點H,猜想AH與AB有什么數(shù)量關(guān)系?并進行證明.
知識運用:(2)如圖2,四邊形ABCD是正方形,E是邊BC的中點,F(xiàn)為邊CD上一點,且∠FEC=2∠BAE,AB=24,求DF的長.
知識拓展:(3)已知∠BAC=45°,AD⊥BC于點D,且BD=2,AD=6,求CD的長.發(fā)布:2025/5/24 21:0:1組卷:268引用:2難度:0.4 -
3.在平面直角坐標(biāo)系中,O為原點,四邊形ABCO是矩形,點A(0,2),C(2
,0),點D是對角線AC上一點(不與A、C重合),連接BD,作DE⊥BD,交x軸于點E,以線段DE、DB為鄰邊作矩形BDEF,連接BE,K為BE的中點,分別連接DK,CK.3
(1)直接寫出點B的坐標(biāo);
(2)求證:DK=CK;
(3)是否存在這樣的點D,使得△DEC是等腰三角形?若存在,請求出AD的長;若不存在,請說明理由.發(fā)布:2025/5/24 22:30:1組卷:13引用:1難度:0.4