已知:如圖①,在矩形ABCD中,AB=3,AD=4,AE⊥BD,垂足是E.點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF.

(1)求AF和BE的長(zhǎng);
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過(guò)的線段長(zhǎng)度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值.
(3)如圖②,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過(guò)程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
【考點(diǎn)】四邊形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1138引用:7難度:0.1
相似題
-
1.如圖,點(diǎn)P是正方形ABCD對(duì)角線AC上一動(dòng)點(diǎn),點(diǎn)E在射線BC上,且PE=PB,連接PD,O為AC中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P在線段OA上時(shí),試猜想PE與PD的數(shù)量關(guān)系和位置關(guān)系.
(2)如圖2,當(dāng)點(diǎn)P在線段OC上時(shí),(1)中的猜想還成立嗎?請(qǐng)說(shuō)明理由.
(3)如圖2,試用等式來(lái)表示PB、BC、CE之間的數(shù)量關(guān)系:.發(fā)布:2025/6/8 18:0:1組卷:53引用:1難度:0.1 -
2.將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α°到正方形AEFG.
(1)如圖1,當(dāng)0°<α<90°時(shí),EF與CD相交于點(diǎn)H.求證:DH=EH;
(2)如圖2,當(dāng)0°<α<90°,點(diǎn)F、D、B正好共線時(shí),
①求∠AFB度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,求CH的長(zhǎng):
(3)連接DE,EC,F(xiàn)C.如圖3,正方形AEFG在旋轉(zhuǎn)過(guò)程中,是否存在實(shí)數(shù)m使AE2=DE2+mFC2-EC2總成立?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/8 13:30:1組卷:67引用:1難度:0.2 -
3.定義:四邊形ABCD中,將對(duì)角線AC和BD的平方和,即AC2+BD2的值稱為四邊形ABCD的“特征數(shù)”.
(1)①在菱形ABCD中,AB=4,∠BAD=60°,則菱形ABCD的“特征數(shù)”=;
②正方形EFGH的“特征數(shù)”等于16,則邊長(zhǎng)=;
(2)平行四邊形ABCD中,AB=a,BC=b,試證明:平行四邊形ABCD的“特征數(shù)”為2a2+2b2;
(3)利用(2)的結(jié)論解決下列問(wèn)題:
平行四邊形ABCD中,,BC=6,且AC?BD=60,AC<BD,試求AC和BD的長(zhǎng)度.AB=42發(fā)布:2025/6/8 15:0:1組卷:373引用:3難度:0.2