若一個四位數M的個位數字與十位數字的和與它們的差之積恰好是M去掉個位數字與十位數字后得到的兩位數,則這個四位數M為“和差數”.
例如:M=1514,∵(4+1)(4-1)=15,∴1514是“和差數”.
又如:M=2526,∵(6+2)(6-2)=32≠25,∴2526不是“和差數”.
(1)判斷2022,2046是否是“和差數”,并說明理由;
(2)一個“和差數”M的千位數字為a,百位數字為b,十位數字為c,個位數字為d,記G(M)=dc,且P(M)=Mc+d.當G(M),P(M)均是整數時,求出所有滿足條件的M.
G
(
M
)
=
d
c
P
(
M
)
=
M
c
+
d
【答案】(1)2022不是“和差數”,2046是“和差數”;
(2)滿足條件的M為1224或2736或4848或6318.
(2)滿足條件的M為1224或2736或4848或6318.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/5/24 7:30:1組卷:222引用:1難度:0.4
相似題
-
1.如果x3+ax2+bx+8能被x2+3x+2整除,則
的值是( ?。?/h2>ba發(fā)布:2025/5/23 14:30:1組卷:1057難度:0.5 -
2.已知ab=3,a+b=4,則代數式a3b+ab3的值為 .
發(fā)布:2025/5/24 4:30:1組卷:151引用:2難度:0.7 -
3.材料:一個兩位數記為x,另外一個兩位數記為y,規(guī)定F(x,y)=
,當F(x,y)為整數時,稱這兩個兩位數互為“均衡數”.x+y7
例如:x=42,y=21,則F(42,21)==9,所以42,21互為“均衡數”,又如x=54,y=43,F(xiàn)(54,43)=42+217不是整數,所以54,43不是互為“均衡數”.54+437
(1)請判斷40,41和52,17是不是互為“均衡數”,并說明理由.
(2)已知x,y是互為“均衡數”,且x=10a+b,y=20a+2b+c+5,(1≤a≤4,1≤b≤4,0≤c≤4,且a、b、c為整數),規(guī)定G(x,y)=2x-y.若G(x,y)除以7余數為2,求出F(x,y)值.發(fā)布:2025/5/24 8:30:1組卷:205難度:0.4