如圖,直線a、b被直線c、d所截,若∠1=100°,∠2=80°,∠3=95°,則∠4的度數(shù)是( ?。?/h1>
【考點】平行線的判定與性質(zhì).
【答案】C
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/6/8 7:0:2組卷:171引用:4難度:0.9
相似題
-
1.完成證明并寫出推理根據(jù):
如圖,直線PQ分別與直線AB、CD交于點E和點F,∠1=∠2,射線EM、EN分別與直線CD交于點M、N,且EM⊥EW,則∠4與∠3有何數(shù)量關(guān)系?并說明理由.
解:∠4與∠3的數(shù)量關(guān)系為 ,理由如下:
∵∠1=∠2(已知),
∴∥( ),
∴∠4=∠( ),
∵EM⊥EN(已知),
∴∠MEN=90°( ),
∵∠BEM-∠3=∠,
∴∠4=∠3+.發(fā)布:2025/6/8 11:0:1組卷:30引用:1難度:0.5 -
2.如圖,在三角形ABC中,點D,F(xiàn)在BC邊上,點E在AB邊上,點G在AC邊上,EF與GD的延長線交于點H,∠1=∠B,∠2+∠3=180°.
(1)EH與AD的位置關(guān)系為 ;
(2)若∠DGC=58°,且∠H=∠4+10°,則∠H=.發(fā)布:2025/6/8 10:30:2組卷:105引用:1難度:0.6 -
3.完成證明并寫出推理根據(jù)
已知,如圖,∠1=132°,∠ACB=48°,∠2=∠3,F(xiàn)H⊥AB于H,
求證:CD⊥AB.
證明:∵∠1=132°,∠ACB=48°∴∠1+∠ACB=180°∴DE∥BC
∴∠2=∠DCB()
又∵∠2=∠3
∴∠3=∠DCB()
∴HF∥DC()
∴∠CDB=∠FHB.()
又∵FH⊥AB,
∴∠FHB=90°∴∠CDB=°
∴CD⊥AB.()發(fā)布:2025/6/8 10:30:2組卷:158引用:7難度:0.7
相關(guān)試卷