已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長最小時(shí),求點(diǎn)P的坐標(biāo);
(3)設(shè)點(diǎn)M是線段BC上的一個(gè)動(dòng)點(diǎn),過M作x軸的垂線,交拋物線于點(diǎn)N,是否存在使MN長度最大的點(diǎn)M,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=-x2+2x+3;
(2)點(diǎn)P的坐標(biāo)為:(1,2);
(3)存在,M(,-).
(2)點(diǎn)P的坐標(biāo)為:(1,2);
(3)存在,M(
3
2
3
2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:85引用:1難度:0.4
相似題
-
1.已知:將函數(shù)
的圖象向上平移2個(gè)單位,得到一個(gè)新的函數(shù)圖象.y=33x
(1)寫出這個(gè)新的函數(shù)的解析式;
(2)若平移前后的這兩個(gè)函數(shù)圖象分別與y軸交于O,A兩點(diǎn),與直線交于C,B兩點(diǎn).試判斷以A,B,C,O四點(diǎn)為頂點(diǎn)四邊形狀,并說明理由;x=-3
(3)若(2)中的四邊形(不包括邊界)始終覆蓋著二次函數(shù)的圖象一部分,求滿足條件的實(shí)數(shù)b的取值范圍.y=x2-2bx+b2+12發(fā)布:2025/6/9 20:30:1組卷:51引用:5難度:0.1 -
2.如圖,在平面直角坐標(biāo)系中,四邊形OABC為菱形,點(diǎn)C的坐標(biāo)為(4,0),∠AOC=60°,垂直于x軸的直線l從y軸出發(fā),沿x軸正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng),設(shè)直線l與菱形OABC的兩邊分別交于點(diǎn)M、N(點(diǎn)M在點(diǎn)N的上方).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)△OMN的面積為S,直線l運(yùn)動(dòng)時(shí)間為t秒(0≤t≤6),試求S與t的函數(shù)表達(dá)式;
(3)在題(2)的條件下,t為何值時(shí),S的面積最大?最大面積是多少?發(fā)布:2025/6/9 17:0:1組卷:570引用:26難度:0.1 -
3.如圖,已知拋物線y=
x2+bx+c經(jīng)過點(diǎn)A(-1,0)、B(5,0).13
(1)求拋物線的解析式,并寫出頂點(diǎn)M的坐標(biāo);
(2)若點(diǎn)C在拋物線上,且點(diǎn)C的橫坐標(biāo)為8,求四邊形AMBC的面積;
(3)定點(diǎn)D(0,m)在y軸上,若將拋物線的圖象向左平移2個(gè)單位,再向上平移3個(gè)單位得到一條新的拋物線,點(diǎn)P在新的拋物線上運(yùn)動(dòng),求定點(diǎn)D與動(dòng)點(diǎn)P之間距離的最小值d(用含m的代數(shù)式表示)發(fā)布:2025/6/9 18:30:1組卷:1924引用:6難度:0.2