如圖,在菱形ABCD中,AB=3,∠B=60°.將菱形ABCD繞點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<60°),得到菱形AEFG,EF與BC,CD分別交于點I,J,AE與BC交于點H,F(xiàn)G與AD交于點K,連接AI.
(1)用含α的代數(shù)式表示∠BIE;
(2)求證:AI平分∠BIF;
(3)在α從0°到60°的變化過程中,
①△CIJ的周長是否變化?若不變,請求出△CIJ的周長;若變化,請說明理由.
②直接寫出點K的運動路徑長.
【考點】四邊形綜合題.
【答案】(1)α;
(2)證明見解析部分;
(3)①△CIJ的周長不變.周長為3.理由見解析部分;
②6-3.
(2)證明見解析部分;
(3)①△CIJ的周長不變.周長為3.理由見解析部分;
②6-3
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:239引用:1難度:0.1
相似題
-
1.數(shù)學(xué)活動課上,老師讓同學(xué)們根據(jù)下面情境提出問題并解答.問題情境:在?ABCD中,點P是邊AD上一點,將△PDC沿直線PC折疊,點D的對應(yīng)點為E.
數(shù)學(xué)思考:
(1)“興趣小組”提出的問題是:如圖1,若點P與點A重合,過點E作EF∥AD,與PC 交于點F,連接DF,則四邊形AEFD是菱形.請你證明“興趣小組”提出的問題;
拓展探究:
(2)“智慧小組”提出的問題是:如圖2,當(dāng)點P為AD的中點時,延長CE交AB于點F,連接PF.試判斷PF與PC的位置關(guān)系,并說明理由;
問題解決:
(3)“創(chuàng)新小組”在前兩個小組的啟發(fā)下,提出的問題是:如圖3,當(dāng)點E恰好落在AB邊上時,AP=6,PD=8,DC=20,求AE的長.?
發(fā)布:2025/5/23 13:0:1組卷:604引用:5難度:0.4 -
2.綜合與實踐
在綜合實踐課上,同學(xué)們以“正方形的旋轉(zhuǎn)”為主題開展學(xué)習(xí)數(shù)學(xué)活動.
操作判斷
(1)操作一:將正方形ABCD與正方形AEFG的頂點A重合,點G在正方形ABCD的邊AD上,如圖1,連接CF,取CF的中點O,連接DO,OG.操作發(fā)現(xiàn),DO與OG的位置關(guān)系是 ;DO與OG的數(shù)量關(guān)系是 ;
(2)操作二:將正方形AEFG繞頂點A順時針旋轉(zhuǎn),(1)中的兩個結(jié)論是否仍然成立?如果成立,請僅就圖2的情形進(jìn)行證明;如果不成立,請說明理由;
拓展應(yīng)用
(3)若AB=4,AE=2,當(dāng)∠BAG=150°時,請直接寫出DO的長.發(fā)布:2025/5/23 11:30:2組卷:456引用:6難度:0.3 -
3.如圖1,在△ABC中,∠BAC=90°,AB=AC,過點A作AD⊥BC于點D,點M為線段AD上一點(不與A,D重合),在線段BD上取點N,使DM=DN,連接AN,CM.
(1)觀察猜想:線段AN與CM的數(shù)量關(guān)系是 ,AN與CM的位置關(guān)系是 ;
(2)類比探究:將△DMN繞點D旋轉(zhuǎn)到如圖2所示的位置,請寫出AN與CM的數(shù)量關(guān)系及位置關(guān)系,并就圖2的情形說明理由;
(3)問題解決:已知AD=3,DM=3,將△DMN繞點D旋轉(zhuǎn),當(dāng)以A、D、M、N四點為頂點的四邊形為平行四邊形時,直接寫出BN的長.2發(fā)布:2025/5/23 12:0:2組卷:139引用:3難度:0.1