(1)【方法應(yīng)用】如圖①,在△ABC中,AB=6,AC=4,則BC邊上的中線AD長度的取值范圍是 1<AD<51<AD<5.(2)【猜想證明】如圖②,在四邊形ABCD中,AD∥BC,點E是CD的中點,若AE是∠BAD的平分線,連接BE.①試猜想線段AB、AD、BC之間的數(shù)量關(guān)系 AB=AD+BCAB=AD+BC.(不用證明)
②猜想AE與BE有怎樣的位置關(guān)系,并證明你的猜想;
(3)【拓展延伸】如圖③,已知AD∥CB,點E是BD的中點,點F在線段AE上,∠DAE=∠CFE=30°,取CF中點G,連接EG,若AD=10,BC=4,∠GEF=45°,線段EG的長為 322322.

3
2
2
3
2
2
【考點】四邊形綜合題.
【答案】1<AD<5;AB=AD+BC;
3
2
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/19 8:0:9組卷:206引用:1難度:0.3
相似題
-
1.如圖,△ABC中,∠CAB與∠CBA均為銳角,分別以CA、CB為邊向△ABC外側(cè)作正方形CADE和正方形CBFG,再作DD1⊥直線AB于D1,F(xiàn)F1⊥直線AB于F1.
(1)如圖(1),過點C作CH⊥AB于H,求證:DD1+FF1=AB;
(2)如圖(2),連接EG,問△ABC的面積與△ECG的面積是否相等?請說明理由;
(3)如圖(3),過點C作CM⊥EG于M,延長MC交AB于點N,求證:AN=BN.發(fā)布:2025/6/21 3:30:1組卷:127引用:3難度:0.5 -
2.在平面直角坐標(biāo)系中,已知點A(a,0),C(0,b)且a,b滿足(a+1)2+
=0.b+3
(1)直接寫出:a=,b=;
(2)點B在x軸正半軸上,過點B作BE⊥AC于點E,交y軸于點D(0,-1),連接OE,若OE平分∠AEB,求點B和點E的坐標(biāo);
(3)在(2)的條件下,若點P是直線BE上的動點,點Q是該平面內(nèi)某一點,且以點P、Q、A、B為頂點的四邊形是菱形,直接寫出點P的坐標(biāo).發(fā)布:2025/6/21 13:30:2組卷:105引用:1難度:0.3 -
3.如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=10cm,AD=20cm,BC=24cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿CB方向向點B以3cm/s的速度運動.P、Q兩點同時出發(fā),設(shè)運動時間為t,當(dāng)其中一點到達(dá)端點時,另一點隨之停止運動.
(1)當(dāng)t=3時,PD=,CQ=.
(2)當(dāng)t為何值時,四邊形CDPQ是平行四邊形?請說明理由.
(3)在運動過程中,設(shè)四邊形CDPQ的面積為S,寫出S與t的函數(shù)關(guān)系式,并求當(dāng)t為何值時,S的值最大,最大值是多少?發(fā)布:2025/6/21 2:0:1組卷:147引用:2難度:0.3