觀察下面的變化規(guī)律:
11×2=1-12.
12×3=12-13.
13×4=13-14.
…
解答下面的問題:
(1)第4個(gè)等式是 14-1514-15.
(2)第n個(gè)等式是 1n-1n+11n-1n+1.
(3)利用上面的規(guī)律計(jì)算:+12×3+13×4+…+12020×2021.
1
1
×
2
=
1
-
1
2
1
2
×
3
=
1
2
-
1
3
1
3
×
4
=
1
3
-
1
4
1
4
-
1
5
1
4
-
1
5
1
n
-
1
n
+
1
1
n
-
1
n
+
1
1
2
×
3
1
3
×
4
1
2020
×
2021
【考點(diǎn)】規(guī)律型:數(shù)字的變化類;有理數(shù)的混合運(yùn)算.
【答案】;
1
4
-
1
5
1
n
-
1
n
+
1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:136引用:2難度:0.7
相似題
-
1.觀察以下等式:
第1個(gè)等式;14-1=14(1+11×3)
第2個(gè)等式;416-1=14(1+13×5)
第3個(gè)等式;936-1=14(1+15×7)
第4個(gè)等式;1664-1=14(1+17×9)
……
按照以上規(guī)律,解決下列問題:
(1)寫出第5個(gè)等式:.
(2)寫出你猜想的第n個(gè)等式 (用含n的等式表示),并證明.發(fā)布:2025/5/24 11:0:1組卷:151引用:3難度:0.6 -
2.觀察下列等式:
第1個(gè)等式:;1+11×3=221×3
第2個(gè)等式:;1+12×4=322×4
第3個(gè)等式:;1+13×5=423×5
第4個(gè)等式:……1+14×6=524×6
按照以上規(guī)律,解決下列問題:
(1)寫出第5個(gè)等式:;
(2)寫出第n個(gè)等式:(用含n的等式表示),并證明;
(3)計(jì)算:.(1+11×3)×(1+12×4)×(1+13×5)×(1+14×6)×…×(1+12020×2022)×(1+12021×2023)發(fā)布:2025/5/24 13:0:1組卷:545引用:5難度:0.5 -
3.觀察以下等式:第1個(gè)等式:
;第2個(gè)等式:21-32=12;第3個(gè)等式:32-56=23;第4個(gè)等式:43-712=34;……;按照以上規(guī)律,解決下列問題:54-920=45
(1)寫出第6個(gè)等式;
(2)寫出你猜想的第n個(gè)等式:(用含n的等式表示),并證明.發(fā)布:2025/5/24 11:30:1組卷:110引用:4難度:0.7