我們來規(guī)定下面兩種數(shù):
①平方和數(shù):若一個(gè)三位或者三位以上的整數(shù)分成左、中、右三個(gè)數(shù)后滿足:中間數(shù)=(左邊數(shù))2+(右邊數(shù))2,我們就稱該整數(shù)是平方和數(shù),比如:對于整數(shù)251,它的中間數(shù)是5,左邊數(shù)是2,右邊數(shù)是1,∵22+12=5,∴251是平方和數(shù);再比如:3254,∵32+42=25,∴3254是一個(gè)平方和數(shù);當(dāng)然152,4253這兩個(gè)數(shù)也肯定是平方和數(shù);
②雙倍積數(shù):若一個(gè)三位或者三位以上的整數(shù)分成左、中、右三個(gè)數(shù)后滿足:中間數(shù)=2×左邊數(shù)×右邊數(shù),我們稱該整數(shù)是雙倍積數(shù);比如:對于整數(shù)142,它的中間數(shù)是4,左邊數(shù)是1,右邊數(shù)是2,∵2×1×2=4,∴142是一個(gè)雙倍積數(shù);再比如:3305,∵2×3×5=30,∴3305是一個(gè)雙倍積數(shù);當(dāng)然,241,5303也是一個(gè)雙倍積數(shù);
注意:在下列問題中,我們統(tǒng)一用字母a表示一個(gè)整數(shù)分出來的左邊數(shù),用字母b表示一個(gè)整數(shù)分出來的右邊數(shù),請根據(jù)上述定義完成下面問題:
(1)如果一個(gè)三位整數(shù)為平方和數(shù),且十位數(shù)字是9,則該三位整數(shù)是 390390;如果一個(gè)三位整數(shù)為雙倍積數(shù),十位數(shù)字是6,則該三位整數(shù)是 163或361163或361;
(2)若一個(gè)整數(shù)既是平方和數(shù),又是雙倍積數(shù),則a、b應(yīng)該滿足怎樣的數(shù)量關(guān)系?說明理由;
(3)若a1325b為一個(gè)平方和數(shù),a700b為一個(gè)雙倍積數(shù),求a2-b2的值.
【考點(diǎn)】因式分解的應(yīng)用.
【答案】390;163或361
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:9引用:1難度:0.6
相似題
-
1.已知正整數(shù)a,b,c(其中a≠1)滿足abc=ab+8,則a+b+c的最小值是 .
發(fā)布:2025/6/7 13:30:1組卷:435引用:6難度:0.7 -
2.若a、b、c分別是三角形的3條邊的長,請判斷代數(shù)式(a-b)2-c2的值 0(填“大于”、“小于”或“等于”)
發(fā)布:2025/6/7 12:30:2組卷:150引用:2難度:0.7 -
3.先閱讀下面的內(nèi)容,再解決問題:
問題:對于形如x2+2xa+a2,這樣的二次三項(xiàng)式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項(xiàng)式x2+2xa-3a2,就不能直接運(yùn)用公式了.此時(shí),我們可以在二次三項(xiàng)式x2+2xa-3a2中先加上一項(xiàng)a2,使它與x2+2xa的和成為一個(gè)完全平方式,再減去a2,整個(gè)式子的值不變,于是有:x2+2xa-3a2=(x2+2xa+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)像這樣,先添一適當(dāng)項(xiàng),使式中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變的方法稱為“配方法”.利用“配方法”,解決下列問題:
(1)分解因式:a2-6a+5;
(2)若;a2+b2-12a-6b+45+|12m-c|=0
①當(dāng)a,b,m滿足條件:2a×4b=8m時(shí),求m的值;
②若△ABC的三邊長是a,b,c,且c邊的長為奇數(shù),求△ABC的周長.發(fā)布:2025/6/7 15:0:1組卷:525引用:3難度:0.4