一個(gè)四位數(shù),記千位上和百位上的數(shù)字之和為x,十位上和個(gè)位上的數(shù)字之和為y,如果x=y,那么稱這個(gè)四位數(shù)為“和平數(shù)”.
例如:1423,x=1+4,y=2+3,因?yàn)閤=y,所以1423是“和平數(shù)”.
(1)直接寫出:最小的“和平數(shù)”是10011001,最大的“和平數(shù)”是99999999;
(2)求個(gè)位上的數(shù)字是千位上的數(shù)字的兩倍且百位上的數(shù)字與十位上的數(shù)字之和是12的倍數(shù)的所有“和平數(shù)”;
(3)將一個(gè)“和平數(shù)”的個(gè)位上與十位上的數(shù)字交換位置,同時(shí),將百位上與千位上的數(shù)字交換位置,稱交換前后的這兩個(gè)“和平數(shù)”為一組“相關(guān)和平數(shù)”.
例如:1423與4132為一組“相關(guān)和平數(shù)”
求證:任意的一組“相關(guān)和平數(shù)”之和是1111的倍數(shù).
【考點(diǎn)】因式分解的應(yīng)用.
【答案】1001;9999
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:799引用:4難度:0.3
相似題
-
1.設(shè)a、b為任意不相等的正數(shù),且
,x=b2+4a,則x、y一定( )y=a2+4b發(fā)布:2025/5/25 18:30:1組卷:50引用:1難度:0.6 -
2.正實(shí)數(shù)x、y、z滿足:xy+3yz=20,則2x2+5y2+2z2的最小值為 .
發(fā)布:2025/5/25 19:30:2組卷:86引用:1難度:0.5 -
3.一個(gè)四位正整數(shù)P滿足千位上的數(shù)字比百位上的數(shù)字大2,十位上的數(shù)字比個(gè)位上的數(shù)字大2,千位上的數(shù)字與十位上的數(shù)字不相等且各個(gè)數(shù)位上的數(shù)字均不為零,則稱P為“雙減數(shù)”,將“雙減數(shù)”P的千位和十位數(shù)字組成的兩位數(shù)與百位和個(gè)位數(shù)字組成的兩位數(shù)的和記為M(P),將“雙減數(shù)”P的千位和百位數(shù)字組成的兩位數(shù)與十位和個(gè)位數(shù)字組成的兩位數(shù)的差記為N(P),并規(guī)定F(P)=
.M(P)N(P)
例如:四位正整數(shù)7564,∵7-5=6-4=2,且7≠6,∴7564是“雙減數(shù)”,此M(7564)=76+54=130,N(7564)=75-64=11,∴F(7564)=.13011
(1)填空:F(3186)=,并證明對(duì)于任意“雙減數(shù)”A,N(A)都能被11整除;
(2)若“雙減數(shù)”P為偶數(shù),且M(P)-N(P)能被6整除,求滿足條件的所有“雙減數(shù)”P,并求F(P)的值.發(fā)布:2025/5/25 17:0:1組卷:383引用:2難度:0.5