如圖,在四邊形ABCD中,AD=11,BC=CD=13,對角線AC=20,點E是AB邊上一點,連接CE.
(1)若AB>AD且AC平分∠DAB,
①當(dāng)AE=AD時,求證:CE=BC;
②求線段CE的最小值;
(2)當(dāng)點E是AB邊的中點,且CE=12BC時,直接寫出△ABC的面積.
1
2
【考點】四邊形綜合題.
【答案】(1)①證明見解答;②12;(2)10.
69
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/5/24 3:0:1組卷:152引用:1難度:0.4
相似題
-
1.[問題提出]
正多邊形內(nèi)任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關(guān)系?
[問題探究]
如圖①,△ABC是等邊三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點,P到△ABC各邊距離PF、PE、PD分別為h1、h2、h3,設(shè)△ABC的邊長是a,面積為S.過點O作OM⊥AB.
∴OM=Rcos∠AOB=Rcos60°,AM=Rsin12∠AOB=Rsin60°,AB=2AM=2Rsin60°12
∴S△ABC=3S△AOB=3×AB×OM=3R2sin60°cos60°①12
∵S△ABC又可以表示為a(h1+h2+h3)②12
聯(lián)立①②得a(h1+h2+h3)=3R2sin60°cos60°12
∴×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°12
∴h1+h2+h3=3Rcos60°
[問題解決]
如圖②,五邊形ABCDE是正五邊形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點,P到△ABC各邊距PH、PM、PN、PI、PL分別為h1、h2、h3、h4、h5,參照(1)的分析過程,探究h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
[性質(zhì)應(yīng)用]
(1)正六邊形(半徑是R)內(nèi)任意一點P到各邊距離之和h1+h2+h3+h4+h5+h6=.
(2)如圖③,正n邊形(半徑是R)內(nèi)任意一點P到各邊距離之和h1+h2+hn-1+hn=.發(fā)布:2025/5/24 8:0:1組卷:149引用:1難度:0.2 -
2.在五邊形ABCDE中,四邊形ABCD是矩形,△ADE是以E為直角頂點的等腰直角三角形.CE與AD交于點G,將直線EC繞點E順時針旋轉(zhuǎn)45°交AD于點F.
(1)求證:∠AEF=∠DCE;
(2)判斷線段AB,AF,F(xiàn)C之間的數(shù)量關(guān)系,并說明理由;
(3)若FG=CG,且AB=2,求線段BC的長.發(fā)布:2025/5/24 8:0:1組卷:328引用:2難度:0.2 -
3.綜合與探究
(1)如圖1,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且AE⊥BF,請寫出線段AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)【類比探究】
如圖2,在矩形ABCD中,AB=3,AD=5,點E,F(xiàn)分別在邊BC,CD上,且AE⊥BF,請寫出線段AE與BF的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)【拓展延伸】
如圖3,在Rt△ABC中,∠ABC=90°,D為BC中點,連接AD,過點B作BE⊥AD于點F,交AC于點E,若AB=3,BC=4,求BE的長.發(fā)布:2025/5/24 9:0:1組卷:760引用:4難度:0.1