問題情景:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
(1)天天同學(xué)看過圖形后立即回答出:∠APC=110°,請你補(bǔ)全他的推理依據(jù).
如圖2,過點(diǎn)P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD.( 平行于同一條直線的兩條直線平行平行于同一條直線的兩條直線平行)
∴∠A+∠APE=180°.
∠C+∠CPE=180°.( 兩直線平行同旁內(nèi)角互補(bǔ)兩直線平行同旁內(nèi)角互補(bǔ))
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°
∴∠APC=∠APE+∠CPE=110°.( 等量代換等量代換)
問題遷移:
(2)如圖3,AD∥BC,當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β,求∠CPD與∠α、∠β之間有何數(shù)量關(guān)系?請說明理由.
(3)在(2)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請你直接寫出∠CPD與∠α、∠β之間的數(shù)量關(guān)系.

【考點(diǎn)】平行線的判定與性質(zhì).
【答案】平行于同一條直線的兩條直線平行;兩直線平行同旁內(nèi)角互補(bǔ);等量代換
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:3960引用:9難度:0.5
相似題
-
1.完成證明并寫出推理根據(jù):
如圖,直線PQ分別與直線AB、CD交于點(diǎn)E和點(diǎn)F,∠1=∠2,射線EM、EN分別與直線CD交于點(diǎn)M、N,且EM⊥EW,則∠4與∠3有何數(shù)量關(guān)系?并說明理由.
解:∠4與∠3的數(shù)量關(guān)系為 ,理由如下:
∵∠1=∠2(已知),
∴∥( ),
∴∠4=∠( ),
∵EM⊥EN(已知),
∴∠MEN=90°( ),
∵∠BEM-∠3=∠,
∴∠4=∠3+.發(fā)布:2025/6/8 11:0:1組卷:30引用:1難度:0.5 -
2.如圖,在三角形ABC中,點(diǎn)D,F(xiàn)在BC邊上,點(diǎn)E在AB邊上,點(diǎn)G在AC邊上,EF與GD的延長線交于點(diǎn)H,∠1=∠B,∠2+∠3=180°.
(1)EH與AD的位置關(guān)系為 ;
(2)若∠DGC=58°,且∠H=∠4+10°,則∠H=.發(fā)布:2025/6/8 10:30:2組卷:105引用:1難度:0.6 -
3.完成證明并寫出推理根據(jù)
已知,如圖,∠1=132°,∠ACB=48°,∠2=∠3,F(xiàn)H⊥AB于H,
求證:CD⊥AB.
證明:∵∠1=132°,∠ACB=48°∴∠1+∠ACB=180°∴DE∥BC
∴∠2=∠DCB()
又∵∠2=∠3
∴∠3=∠DCB()
∴HF∥DC()
∴∠CDB=∠FHB.()
又∵FH⊥AB,
∴∠FHB=90°∴∠CDB=°
∴CD⊥AB.()發(fā)布:2025/6/8 10:30:2組卷:158引用:7難度:0.7