(1)某學(xué)習(xí)小組在探究三角形全等時,發(fā)現(xiàn)了下面這種典型的基本圖形.如圖1,在△ABC中,∠BAC=90°,AB=CA,直線l經(jīng)過點(diǎn)A,作BD⊥直線l,CE⊥直線l,垂足分別為點(diǎn)D,E.請說明DE=BD+CE.
(2)組員小明想,如果三個相等的角不是直角,那么(1)中的結(jié)論是否會成立呢?如圖2,將(1)中的條件改為:在△ABC中,AB=CA,D,A,E三點(diǎn)都在直線l上,且∠BDA=∠AEC=∠BAC.請判斷DE=BD+CE是否成立,并說明理由.
(3)數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵他們運(yùn)用這個知識來解決問題.如圖3,D,E是直線l上的兩動點(diǎn)(D,A,E三點(diǎn)均在直線l上且互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD,CE.若∠BDA=∠AEC=∠BAC,請說明DF=EF.

【考點(diǎn)】三角形綜合題.
【答案】(1)證明見解答過程;
(2)DE=BD+CE成立,理由見解答過程;
(3)證明見解答過程.
(2)DE=BD+CE成立,理由見解答過程;
(3)證明見解答過程.
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/17 8:0:9組卷:151引用:5難度:0.5
相似題
-
1.如圖,已知:Rt△ABC中,∠BAC=90°,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)P是BC邊上的一個動點(diǎn).
(1)如圖1,若點(diǎn)P與點(diǎn)D重合,連接AP,則AP與BC的位置關(guān)系是 ;
(2)如圖2,若點(diǎn)P在線段BD上,過點(diǎn)B作BE⊥AP于點(diǎn)E,過點(diǎn)C作CF⊥AP于點(diǎn)F,則CF,BE和EF這三條線段之間的數(shù)量關(guān)系是 ;
(3)如圖3,在(2)的條件下,若BE的延長線交直線AD于點(diǎn)M,求證:CP=AM;
(4)如圖4,已知BC=4,若點(diǎn)P從點(diǎn)B出發(fā)沿著BC向點(diǎn)C運(yùn)動,過點(diǎn)B作BE⊥AP于點(diǎn)E,過點(diǎn)C作CF⊥AP于點(diǎn)F,設(shè)線段BE的長度為d1,線段CF的長度為d2,試求出點(diǎn)P在運(yùn)動的過程中d1+d2的最大值.發(fā)布:2025/5/23 2:30:1組卷:469引用:3難度:0.4 -
2.問題提出
如圖(1),在△ABC中,AB=AC,D是AC的中點(diǎn),延長BC至點(diǎn)E,使DE=DB,延長ED交AB于點(diǎn)F,探究的值.AFAB
問題探究
(1)先將問題特殊化.如圖(2),當(dāng)∠BAC=60°時,直接寫出的值;AFAB
(2)再探究一般情形.如圖(1),證明(1)中的結(jié)論仍然成立.
問題拓展
如圖(3),在△ABC中,AB=AC,D是AC的中點(diǎn),G是邊BC上一點(diǎn),=CGBC(n<2),延長BC至點(diǎn)E,使DE=DG,延長ED交AB于點(diǎn)F.直接寫出1n的值(用含n的式子表示).AFAB發(fā)布:2025/5/23 0:30:1組卷:3847引用:7難度:0.3 -
3.定理證明
(1)如圖1,在Rt△ABC中,∠ACB=90°,CD是斜邊AB上的中線,求證:CD=AB.12
下面給出了部分證明過程:
證明:如圖1,延長CD至點(diǎn)E,使DE=CD,連接AE,BE,
則,…CD=12CE
請你結(jié)合圖1,補(bǔ)全證明過程;
結(jié)論應(yīng)用
(2)如圖2,在△ABC中,D為邊BC的中點(diǎn),BE⊥AC于點(diǎn)E,CF⊥AB于點(diǎn)F,連接DE,DF和EF.若BC=10,EF=6,求△DEF的面積;
拓展提高
(3)如圖3,在△ABC中,∠B=30°,∠ADC=45°,AD恰好是中線,求∠ACB的度數(shù).?
發(fā)布:2025/5/23 4:0:1組卷:150引用:1難度:0.2