如圖,平面直角坐標(biāo)系中,以M(2,0)為圓心的⊙M交x軸于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),且過C(2,4).(1)求⊙M的半徑及點(diǎn)A、B的坐標(biāo);
(2)如圖一,點(diǎn)P(10,0),連接PC并延長,交y軸于點(diǎn)D,線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得CE,連接EB、AD,過點(diǎn)C作AD的垂線交AD于點(diǎn)F,反向延長CF交BE于點(diǎn)G,求△ECG的面積;
(3)以BC為直徑畫圓,記為⊙N,x軸正半軸一動(dòng)點(diǎn)Q坐標(biāo)記為(m,0).
①如圖二,m>6時(shí),連接CQ交⊙M于點(diǎn)R,交⊙N于點(diǎn)S,作AT⊥CQ于T,求證:TC=RS;
②如圖三,-2<m<6時(shí),①中的結(jié)論還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.

【考點(diǎn)】圓的綜合題.
【答案】(1)⊙M的半徑為4,A(-2,0),B(6,0);
(2)S△ECG=3;
(3)①證明見解答;
②TC=RS仍然成立.證明見解答.
(2)S△ECG=3;
(3)①證明見解答;
②TC=RS仍然成立.證明見解答.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/13 11:0:2組卷:112引用:1難度:0.2
相似題
-
1.A,B是⊙C上的兩個(gè)點(diǎn),點(diǎn)P在⊙C的內(nèi)部.若∠APB為直角,則稱∠APB為AB關(guān)于⊙C的內(nèi)直角,特別地,當(dāng)圓心C在∠APB邊(含頂點(diǎn))上時(shí),稱∠APB為AB關(guān)于⊙C的最佳內(nèi)直角.如圖1,∠AMB是AB關(guān)于⊙C的內(nèi)直角,∠ANB是AB關(guān)于⊙C的最佳內(nèi)直角.在平面直角坐標(biāo)系xOy中.
(1)如圖2,⊙O的半徑為5,A(0,-5),B(4,3)是⊙O上兩點(diǎn).
①已知P1(1,0),P2(0,3),P3(-2,1),在∠AP1B,∠AP2B,∠AP3B中,是AB關(guān)于⊙O的內(nèi)直角的是 ;
②若在直線y=2x+b上存在一點(diǎn)P,使得∠APB是AB關(guān)于⊙O的內(nèi)直角,求b的取值范圍.
(2)點(diǎn)A是以C(t,0)為圓心,4為半徑的圓上一個(gè)動(dòng)點(diǎn),⊙C與x軸交于點(diǎn)B(點(diǎn)B在點(diǎn)C的右邊).現(xiàn)有點(diǎn)M(1,0),N(0,2),對(duì)于線段MN上每一點(diǎn)P,都存在點(diǎn)C,使∠APB是AB關(guān)于⊙C的最佳內(nèi)直角,請(qǐng)直接寫出t的取值范圍.發(fā)布:2025/5/23 8:30:2組卷:220引用:1難度:0.1 -
2.如圖,在△ABC中,∠C=90°,AE平分∠BAC并交BC于點(diǎn)E,點(diǎn)O在AB上,經(jīng)過點(diǎn)A,E的半圓O分別交AC,AB于點(diǎn)F,D,連接ED.
(1)求證:BC是⊙O的切線;
(2)判斷∠DEB和∠EAB的數(shù)量關(guān)系,并說明理由;
(3)若⊙O的半徑為5,AC=8,求點(diǎn)E到直線AB的距離.發(fā)布:2025/5/23 8:30:2組卷:232引用:1難度:0.3 -
3.新定義:如果一個(gè)四邊形的對(duì)角線相等,我們稱這個(gè)四邊形為美好四邊形.
【問題提出】
(1)如圖1,若四邊形ABCD是美好四邊形,且AD=BD,∠ABC=90°,AB=4,BC=3,求四邊形ABCD的面積;
【問題解決】
(2)如圖2,某公園內(nèi)需要將4個(gè)信號(hào)塔分別建在A,B,C,D四處,現(xiàn)要求信號(hào)塔C建在公園內(nèi)一個(gè)湖泊的邊上,該湖泊可近似看成一個(gè)半徑為200m的圓,記為⊙E.已知點(diǎn)A到該湖泊的最近距離為500m,是否存在這樣的點(diǎn)D,滿足AC=BD,使得四邊形ABCD的面積最大?若存在,求出最大值;若不存在,請(qǐng)說明理由.發(fā)布:2025/5/23 8:30:2組卷:148引用:2難度:0.5