在Rt△ABC中,AC=BC=82,點(diǎn)D是邊AB的中點(diǎn),連接CD,點(diǎn)E是邊BC所在直線上任意一點(diǎn),連接DE,以DE為邊在DE的左側(cè)作正方形DEFG,連接CF.

(1)如圖①,當(dāng)點(diǎn)E在線段BC上且CE<12BC時,請直接寫出線段CD,CF,CE之間的數(shù)量關(guān)系 CD=2CE+CFCD=2CE+CF;
(2)如圖②,當(dāng)點(diǎn)E在線段BC的延長線上時,(1)中的結(jié)論是否成立;若成立,請證明;若不成立,請寫出新結(jié)論,并證明;
(3)當(dāng)正方形DEFC的邊長為52時,直接寫出CE的長.
2
1
2
2
2
2
【考點(diǎn)】四邊形綜合題.
【答案】CD=CE+CF
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:279引用:2難度:0.3
相似題
-
1.(1)如圖1,在四邊形ABCD中,∠B=∠C=90°,點(diǎn)E是邊BC上一點(diǎn),AB=EC,BE=CD,連接AE、DE.判斷△AED的形狀,并說明理由;
(2)在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(5,1),點(diǎn)C在第一象限內(nèi),若△ABC是等腰直角三角形,求點(diǎn)C的坐標(biāo);
(3)如圖2,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1),點(diǎn)C是x軸上的動點(diǎn),線段CA繞著點(diǎn)C按順時針方向旋轉(zhuǎn)90°至線段CB,連接BO、BA,則BO+BA的最小值是 .發(fā)布:2025/6/8 23:30:1組卷:886引用:3難度:0.3 -
2.如圖,四邊形ABCD中,已知∠BAC=∠BDC=90°,且AB=AC.
(1)求證:∠ABD=∠ACD;
(2)記△ABD的面積為S1,△ACD的面積為S2.
①求證:S1-S2=AD2;12
②過點(diǎn)B作BC的垂線,過點(diǎn)A作BC的平行線,兩直線相交于M,延長BD至P,使得DP=CD,連接MP.當(dāng)MP取得最大值時,求∠CBD的大?。?/h2>發(fā)布:2025/6/8 23:0:1組卷:308引用:4難度:0.1 -
3.如圖,正方形ABCD中,AE=BF.
(1)求證:△BCE≌△CDF;
(2)求證:CE⊥DF;
(3)若CD=6,且DG2+GE2=41,則BE=.發(fā)布:2025/6/8 23:30:1組卷:360引用:3難度:0.6