閱讀下列因式分解的過程,再回答所提出的問題:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.
(1)上述分解因式的方法是提公因式法提公因式法,共應(yīng)用了22次;
(2)若分解1+x+x(x+1)+x(x+1)2+…x(x+1)2019,則需應(yīng)用上述方法20192019次,結(jié)果是(1+x)2020(1+x)2020;
(3)分解因式:1+x+x(x+1)+x(x+1)2+…x(x+1)n(n為正整數(shù))結(jié)果是(1+x)n+1(1+x)n+1.
(4)請利用以上規(guī)律計算:(1+2x)3.
【答案】提公因式法;2;2019;(1+x)2020;(1+x)n+1
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:504引用:3難度:0.5
相似題
-
1.已知正整數(shù)a,b,c(其中a≠1)滿足abc=ab+8,則a+b+c的最小值是 .
發(fā)布:2025/6/7 13:30:1組卷:435引用:6難度:0.7 -
2.如果一個正整數(shù)可以表示為兩個連續(xù)奇數(shù)的平方差,那么稱該正整數(shù)為“和諧數(shù)”(如8=32-12,即8為“和諧數(shù)”),在不超過2021的正整數(shù)中,所有的“和諧數(shù)”之和為( ?。?/h2>
發(fā)布:2025/6/7 17:0:1組卷:145引用:1難度:0.5 -
3.先閱讀下面的內(nèi)容,再解決問題:
問題:對于形如x2+2xa+a2,這樣的二次三項式,可以用公式法將它分解成(x+a)2的形式.但對于二次三項式x2+2xa-3a2,就不能直接運用公式了.此時,我們可以在二次三項式x2+2xa-3a2中先加上一項a2,使它與x2+2xa的和成為一個完全平方式,再減去a2,整個式子的值不變,于是有:x2+2xa-3a2=(x2+2xa+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)像這樣,先添一適當(dāng)項,使式中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變的方法稱為“配方法”.利用“配方法”,解決下列問題:
(1)分解因式:a2-6a+5;
(2)若;a2+b2-12a-6b+45+|12m-c|=0
①當(dāng)a,b,m滿足條件:2a×4b=8m時,求m的值;
②若△ABC的三邊長是a,b,c,且c邊的長為奇數(shù),求△ABC的周長.發(fā)布:2025/6/7 15:0:1組卷:525引用:3難度:0.4
相關(guān)試卷