如圖,在平面直角坐標系中,點O是坐標原點,四邊形ABCO是菱形,點A在x軸的正半軸上,點A的坐標為(8,0),∠C=60°,點M在邊BC上移動(不與B、C重合),點N在邊AB上移動(不與A、B重合),在移動的過程中保持CM+AN=8.
(1)連結(jié)OM,ON,求∠MON的大??;
(2)求△OMN周長的最小值及此時點N的坐標;
(3)在(2)的結(jié)論下,若P為平面內(nèi)一點,當以點O,N,A,P為頂點的四邊形為平行四邊形時,請直接寫出點P的坐標.

【考點】四邊形綜合題.
【答案】(1)60°;
(2)△OMN周長的最小值為12,點N(6,2);
(3)點P的坐標為(2,-2)或(-2,2)或(14,2).
(2)△OMN周長的最小值為12
3
3
(3)點P的坐標為(2,-2
3
3
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/4 8:0:9組卷:58引用:1難度:0.3
相似題
-
1.如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足
+|b-8|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O-C-B-A-O的線路移動.a-4
(1)求a,b的值,點B的坐標.
(2)當點P移動4.5秒時,請指出點P的位置,并求出點P的坐標;
(3)在O-C-B段的移動過程中,當△OPB的面積是12時,求點P移動的時間.發(fā)布:2025/6/8 9:30:1組卷:123引用:3難度:0.1 -
2.定義:只有一組對角是直角的四邊形叫做損矩形,連接它的兩個非直角頂點的線段叫做這個損矩形的直徑.如圖1,∠ABC=∠ADC=90°,四邊形ABCD是損矩形,則該損矩形的直徑是線段AC.同時我們還發(fā)現(xiàn)損矩形中有公共邊的兩個三角形角的特點:在公共邊的同側(cè)的兩個角是相等的.如圖1中:△ABC和△ABD有公共邊AB,在AB同側(cè)有∠ADB和∠ACB,此時∠ADB=∠ACB;再比如△ABC和△BCD有公共邊BC,在CB同側(cè)有∠BAC和∠BDC,此時∠BAC=∠BDC.
(1)請在圖1中再找出一對這樣的角來:=.
(2)如圖2,△ABC中,∠ABC=90°,以AC為一邊向外作菱形ACEF,D為菱形ACEF對角線的交點,連接BD,當BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由.
(3)在第(2)題的條件下,若此時AB=6,BD=8,求BC的長.2發(fā)布:2025/6/8 10:0:2組卷:584引用:6難度:0.3 -
3.如圖,在平面直角坐標系中,△ABC繞旋轉(zhuǎn)中心順時針旋轉(zhuǎn)90°后得到△A'B'C',
(1)其旋轉(zhuǎn)中心的坐標是 ;
(2)寫出點C掃過的路徑長 ;
(3)若在平面內(nèi)有一點D,且四邊形ABCD是平行四邊形,則該四邊形的周長為 ;
(4)在坐標軸上有點E,使S△ABC=S△AEC,直接寫出E點坐標 (寫出平面內(nèi)所有符合條件的點坐標).發(fā)布:2025/6/8 10:0:2組卷:81引用:2難度:0.3