如圖1,正方形ABCD的邊長為4,連接AC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿線段AB向終點(diǎn)B運(yùn)動(dòng),過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.以PE為一邊向右作正方形PEFG.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x秒.正方形PEFG與正方形ABCD重疊部分圖形的面積為y.
(1)當(dāng)x=1時(shí),y=11;
(2)當(dāng)點(diǎn)F落在BC上時(shí),x=22;
(3)當(dāng)x=3時(shí),在圖2中畫出圖形,并求出y的值;
(4)連接CF,當(dāng)△CEF是等腰三角形時(shí),直接寫出x的值.
【考點(diǎn)】四邊形綜合題.
【答案】1;2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/3 8:0:9組卷:36引用:1難度:0.3
相似題
-
1.(1)如圖1,在四邊形ABCD中,∠ABC=∠ADC=90°,AD=CD,對(duì)角線BD=8,求四邊形ABCD的面積;
(2)如圖2,園藝設(shè)計(jì)師想在正六邊形草坪一角∠BOC內(nèi)改建一個(gè)小型的兒童游樂場OMAN.其中OA平分∠BOC,OA=100米,∠BOC=120°,點(diǎn)M,N分別在射線OB和OC上,且∠MAN=90°,為了盡可能的少破壞草坪,要使游樂場OMAN面積最小,你認(rèn)為園林規(guī)劃局的想法能實(shí)現(xiàn)嗎?若能,請(qǐng)求出游樂場OMAN面積的最小值;若不能,請(qǐng)說明理由.發(fā)布:2025/6/9 15:0:1組卷:243引用:2難度:0.2 -
2.如圖,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的邊長為2,將正方形BDEF繞點(diǎn)B旋轉(zhuǎn)一周,連接AE、BE、CD.
(1)請(qǐng)判斷線段AE和CD的數(shù)量關(guān)系,并說明理由;
(2)當(dāng)A、E、F三點(diǎn)在同一直線上時(shí),求CD的長;
(3)設(shè)AE的中點(diǎn)為M,連接FM,試求線段FM長的取值范圍.發(fā)布:2025/6/9 15:0:1組卷:209引用:1難度:0.1 -
3.[閱讀理解]
“倍長中線”是初中數(shù)學(xué)一種重要的思想方法.如圖1,在△ABC中,AD是BC邊上的中線,若延長AD至E,使DE=AD,連接CE,可根據(jù)SAB證明△ABD≌△ECD,則AB=EC.
[問題提出]
(1)如圖2,平行四邊形ABCD中,點(diǎn)E為CD邊的中點(diǎn),在BC邊上找一點(diǎn)F,使得AF=AD+CF(要求:用直尺和圓規(guī)作圖,保留作圖痕跡,不寫作法).
(2)按照你(1)中的作圖過程證明:AF=AD+CF.發(fā)布:2025/6/9 15:30:2組卷:265引用:3難度:0.1