【問題提出】在△ABC和△DEC中,∠ACB=∠DCE=60°,∠CBA=∠CAB,∠CED,∠CDE,點E在△ABC內(nèi)部,直線AD與BE交于點F,探究線段AF、BF、CF之間的數(shù)量關系.
【問題探究】
(1)先將問題特殊化.如圖(1),當點D,F(xiàn)重合時,寫出一個等式表示AF、BF、CF之間的數(shù)關系,并說明理由;
(2)再探究一般情形.如圖(2),當點D,F(xiàn)不重合時,(1)中的結論是否仍然成立,請證明.
【考點】三角形綜合題.
【答案】(1)AF+CF=BF,理由見解答過程;
(2)(1)中的結論AF+CF=BF仍然成立,理由見解答過程.
(2)(1)中的結論AF+CF=BF仍然成立,理由見解答過程.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/18 8:0:9組卷:60引用:1難度:0.5
相似題
-
1.已知AB=BC,∠ABC=90°,直線l是過點B的一條動直線(不與直線AB,BC重合),分別過點A,C作直線l的垂線,垂足為D,E.
(1)如圖1,當45°<∠ABD<90°時,
①求證:CE+DE=AD;
②連接AE,過點D作DH⊥AE于H,過點A作AF∥BC交DH的延長線于點F.依題意補全圖形,用等式表示線段DF,BE,DE的數(shù)量關系,并證明;
(2)在直線l運動的過程中,若DE的最大值為3,直接寫出AB的長.發(fā)布:2025/5/23 20:30:1組卷:1374引用:5難度:0.4 -
2.課本再現(xiàn)
如圖1,在等邊△ABC中,E為邊AC上一點,D為BC上一點,且AE=CD,連接AD與BE相交于點F.
(1)AD與BE的數(shù)量關系是 ,AD與BE構成的銳角夾角∠BFD的度數(shù)是 ;
深入探究
(2)將圖1中的AD延長至點G,使FG=BF,連接BG,CG,如圖2所示.求證:GA平分∠BGC.(第一問的結論,本問可直接使用)
遷移應用
(3)如圖3,在等腰△ABC中,AB=AC,D,E分別是邊BC,AC上的點,AD與BE相交于點F.若∠BAC=∠BFD,且BF=3AF,求值.BDCD發(fā)布:2025/5/23 20:30:1組卷:1077引用:3難度:0.1 -
3.如圖,在△ABC中,AB=AC=3,∠BAC=90°,點D為一個動點,且點D到點C的距離為1,連接CD,AD,作EA⊥AD,使AE=AD.
(1)求證:△ADB≌△AEC;
(2)求證:BD⊥EC;
(3)直接寫出BD最大和最小值;
(4)點D在直線AC上時,求BD的長.發(fā)布:2025/5/23 21:0:1組卷:103引用:2難度:0.4