如圖,在△AOB中,點(diǎn)C為直線AB上一動(dòng)點(diǎn),以O(shè)C為直角邊在AO的同一側(cè)作等腰直角三角形COD,∠DOC=90°,OD=OC.
(1)特例發(fā)現(xiàn):如圖1,如果∠BOA=90°,OA=OB.當(dāng)點(diǎn)C在線段AB上時(shí),易證△AOC≌△BOD(SAS),從而得出結(jié)論:線段BD與AC的數(shù)量關(guān)系為 BD=ACBD=AC,位置關(guān)系為 BD⊥ACBD⊥AC;
(2)探究證明:如圖2,如果∠BOA=90°,OA=OB 條件不變.當(dāng)點(diǎn)C在線段AB的延長線上時(shí),(1)中的結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由;
(3)拓展運(yùn)用:如圖3,若△AOB 是銳角三角形,∠ABO=45°,當(dāng)點(diǎn)C在線段AB上運(yùn)動(dòng)時(shí),判斷線段BD與AC的位置關(guān)系,并說明理由.
?
【考點(diǎn)】三角形綜合題.
【答案】BD=AC;BD⊥AC
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/30 8:0:9組卷:73引用:1難度:0.3
相似題
-
1.(1)問題發(fā)現(xiàn):如圖①,△ABC和△EDC都是等邊三角形,點(diǎn)B、D、E在同一條直線上,連接AE.
①∠AEC的度數(shù)為 ;
②線段AE、BD之間的數(shù)量關(guān)系為 ;
(2)拓展探究:如圖②,△ABC和△EDC都是等腰直角三角形、∠ACB=∠DCE=90°,點(diǎn)B、D、E在同一條直線上,CM為△EDC中DE邊上的高,連接AE,試求∠AEB的度數(shù)及判斷線段CM、AE、BM之間的數(shù)量關(guān)系,并說明理由;
(3)解決問題:如圖③,△ABC和△EDC都是等腰三角形,∠ACB=∠DCE=36°,點(diǎn)B、D,E在同一條直線上,請直接寫出∠EAB+∠ECB的度數(shù).發(fā)布:2025/6/5 19:30:2組卷:3697引用:33難度:0.3 -
2.在平面直角坐標(biāo)系中,A(6,a),B(b,0),M(0,c),且
,P點(diǎn)為y軸上一動(dòng)點(diǎn).(b-2)2+|a-6|+c-6=0
(1)求點(diǎn)B、M的坐標(biāo);
(2)當(dāng)P點(diǎn)在線段OM上運(yùn)動(dòng)時(shí),試問是否存在一個(gè)點(diǎn)P使S△PAB=13,若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
(3)不論點(diǎn)P點(diǎn)運(yùn)動(dòng)到直線OM上的任何位置(不包括點(diǎn)O,M),∠PAM、∠APB、∠PBO三者之間是否都存在某種固定的數(shù)量關(guān)系,如果有,請寫出來并請選擇其中一種結(jié)論進(jìn)行證明;如果沒有,請說明理由.發(fā)布:2025/6/5 18:0:1組卷:35引用:3難度:0.1 -
3.在△ABC中,∠BAC=90°,
,D為BC上任意一點(diǎn),E為AC上任意一點(diǎn).AB=AC=22
(1)如圖1,連接DE,若∠CDE=60°,AC=4AE,求DE的長.
(2)如圖2,若點(diǎn)D為BC中點(diǎn),連接AD,點(diǎn)F為AD上任意一點(diǎn),連接EF并延長交AB于點(diǎn)M,將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段EG,連接AG.點(diǎn)N在AC上,∠AGN=∠AEG且,求證:GN=MF.AM+AF=2AE
(3)如圖3,點(diǎn)D為BC中點(diǎn),連接AD,點(diǎn)F為AD的中點(diǎn),連接EF、BF,將線段EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段EG,連接AG,H為直線AB上一動(dòng)點(diǎn),連接FH,將△BFH沿FH翻折至△ABC所在平面內(nèi),得到△B′FH,連接B′G,直接寫出線段B′G的長度的最大值.發(fā)布:2025/6/5 18:0:1組卷:415引用:2難度:0.1