某數(shù)學(xué)興趣小組在數(shù)學(xué)課外活動中,對多邊形內(nèi)兩條互相垂直的線段進行了如下探究:
【觀察與猜想】
(1)如圖(1),在正方形ABCD中,點E,F(xiàn)分別是AB,AD上的兩點,連接DE,CF,DE⊥CF,則DECF的值為 11;
(2)如圖(2),在矩形ABCD中,AD=7,CD=4,點E是AD上的一點,連接CE,BD,CE⊥BD,則CEBD的值為 4747;
【證明與理解】
(3)如圖(3),在矩形ABCD中,AD=7,CD=4,DE⊥FG,求FGDE的值;
【知識點應(yīng)用】
(4)如圖(4),在Rt△ABD中,∠A=90°,tan∠ADB=13,AD=9,將△ADB沿BD翻折后得到△CBD,點E在AB邊上,點F在AD邊上,CF⊥DE,求CFDE的值.

DE
CF
CE
BD
4
7
4
7
FG
DE
tan
∠
ADB
=
1
3
CF
DE
【考點】相似形綜合題.
【答案】1;
4
7
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:740引用:1難度:0.1
相似題
-
1.如圖1,在Rt△ABC中,∠BAC=90°,D為邊AB上一點,∠ACD=∠B.
(1)求證:AC2=AD?AB;
(2)如圖2,過點A作AM⊥CD于M,交BC于點E,若AB=4AD,求的值;AMME
(3)如圖,N為CD延長線上一點,連接BN,且∠NBD=2∠ACD,若,直接寫出tan∠ACD=1n(n>1)的值(用含n的代數(shù)式表示).NDDC發(fā)布:2025/5/22 10:30:1組卷:557引用:4難度:0.1 -
2.問題背景:某學(xué)習(xí)小組正在研究如下問題:如圖1所示,四邊形ABCD與四邊形CEFG均為正方形,且點E、G分別在邊BC、CD上,連接DE、BG,點M是BG中點,連接CM,試猜測CM與DE的數(shù)量關(guān)系與位置關(guān)系,并加以證明.
解決問題:小華從旋轉(zhuǎn)的角度提出一個問題:如圖2,將正方形CEFG繞點C順時針旋轉(zhuǎn)一定角度,其他條件不變,此時“問題背景”中的結(jié)論還成立嗎?如果成立,請加以證明;如果不成立,請說明理由.
拓展延伸:小剛提出了一個更加一般化的問題:如圖3所示,?ABCD∽?ECGF,且,其他條件不變,此時CM與DE又有怎樣的數(shù)量關(guān)系?請直接寫出結(jié)果.ABBC=ab?
發(fā)布:2025/5/22 10:30:1組卷:242引用:4難度:0.1 -
3.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=3.點D是邊AC上一動點(不與A、C重合),聯(lián)結(jié)BD,過點C作CF⊥BD,分別交BD、AB于點E、F.
(1)當(dāng)CD=2時,求∠ACF的正切值;
(2)設(shè)CD=x,,求y關(guān)于x的函數(shù)解析式,并寫出x的定義域;AFBF=y
(3)聯(lián)結(jié)FD并延長,與邊BC的延長線相交于點G,若△DGC與△BAC相似,求的值.AFBF發(fā)布:2025/5/22 11:30:2組卷:530引用:1難度:0.4
相關(guān)試卷