“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長直角邊長為a,較短直角邊長為b,若(a+b)2=21,大正方形的面積為13,則小正方形的面積為( ?。?/h1>
【考點(diǎn)】勾股定理的證明.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/26 8:0:9組卷:614引用:6難度:0.5
相似題
-
1.在證明勾股定理時(shí),甲、乙兩位同學(xué)給出如圖所示兩種方案,則方案正確的是( )
發(fā)布:2025/6/3 21:0:1組卷:202引用:2難度:0.5 -
2.勾股定理是人類最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一,西方國家稱之為畢達(dá)哥拉斯定理.在我國古書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(如圖1),后人稱之為“趙爽弦圖”,流傳至今.
(1)①如圖2,3,4,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,面積分別為S1,S2,S3,利用勾股定理,判斷這3個(gè)圖形中面積關(guān)系滿足S1+S2=S3的有 個(gè).
②如圖5,分別以直角三角形三邊為直徑作半圓,設(shè)圖中兩個(gè)月牙形圖案(圖中陰影部分)的面積分別為S1,S2,直角三角形面積為S3,也滿足S1+S2=S3嗎?若滿足,請(qǐng)證明;若不滿足,請(qǐng)求出S1,S2,S3的數(shù)量關(guān)系.
(2)如果以正方形一邊為斜邊向外作直角三角形,再以該直角三角形的兩直角邊分別向外作正方形,重復(fù)這一過程就可以得到如圖6所示的“勾股樹”.在如圖7所示的“勾股樹”的某部分圖形中,設(shè)大正方形M的邊長為定值m,四個(gè)小正方形A,B,C,D的邊長分別為a,b,c,d,則a2+b2+c2+d2=.發(fā)布:2025/6/3 22:0:1組卷:665引用:4難度:0.6 -
3.如圖,這是由“趙爽弦圖”變化得到的,它是由八個(gè)全等的直角三角形拼接而成的,記圖中正方形ABCD、正方形EFGH、正方形IJKL的面積分別為S1,S2,S3,若S1+S2+S3的值為75,則正方形EFGH的邊長為( ?。?/h2>
發(fā)布:2025/6/3 22:30:1組卷:305引用:2難度:0.6