常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有些多項式只用上述方法無法分解,如x2-4y2-2x+4y,我們細(xì)心觀察這個式子就會發(fā)現(xiàn),前兩項符合平方差公式,后兩項可提取公因式,前后兩部分分別分解因式后會產(chǎn)生公因式,然后提取公因式就可以完成整個式子的分解因式了.過程為:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2),這種分解因式的方法叫做分組分解法.請你利用這種方法解決下列問題:
(1)分解因式:9x2-6xy+y2-16;
(2)若三角形ABC的三邊長a,b,c滿足 a2-4bc+4ac-ab=0,判斷三角形ABC的形狀.
【考點】因式分解的應(yīng)用.
【答案】(1)(3x-y+4)(3x-y-4);
(2)△ABC為等腰三角形.
(2)△ABC為等腰三角形.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/2 8:0:9組卷:360引用:4難度:0.8
相似題
-
1.若一個四位數(shù)M的個位數(shù)字與十位數(shù)字的和與它們的差之積恰好是M去掉個位數(shù)字與十位數(shù)字后得到的兩位數(shù),則這個四位數(shù)M為“和差數(shù)”.
例如:M=1514,∵(4+1)(4-1)=15,∴1514是“和差數(shù)”.
又如:M=2526,∵(6+2)(6-2)=32≠25,∴2526不是“和差數(shù)”.
(1)判斷2022,2046是否是“和差數(shù)”,并說明理由;
(2)一個“和差數(shù)”M的千位數(shù)字為a,百位數(shù)字為b,十位數(shù)字為c,個位數(shù)字為d,記,且G(M)=dc.當(dāng)G(M),P(M)均是整數(shù)時,求出所有滿足條件的M.P(M)=Mc+d發(fā)布:2025/5/24 7:30:1組卷:222引用:1難度:0.4 -
2.已知ab=3,a+b=4,則代數(shù)式a3b+ab3的值為 .
發(fā)布:2025/5/24 4:30:1組卷:151引用:2難度:0.7 -
3.材料:一個兩位數(shù)記為x,另外一個兩位數(shù)記為y,規(guī)定F(x,y)=
,當(dāng)F(x,y)為整數(shù)時,稱這兩個兩位數(shù)互為“均衡數(shù)”.x+y7
例如:x=42,y=21,則F(42,21)==9,所以42,21互為“均衡數(shù)”,又如x=54,y=43,F(xiàn)(54,43)=42+217不是整數(shù),所以54,43不是互為“均衡數(shù)”.54+437
(1)請判斷40,41和52,17是不是互為“均衡數(shù)”,并說明理由.
(2)已知x,y是互為“均衡數(shù)”,且x=10a+b,y=20a+2b+c+5,(1≤a≤4,1≤b≤4,0≤c≤4,且a、b、c為整數(shù)),規(guī)定G(x,y)=2x-y.若G(x,y)除以7余數(shù)為2,求出F(x,y)值.發(fā)布:2025/5/24 8:30:1組卷:205引用:2難度:0.4