閱讀材料:我們把多項式a2+2ab+b2及a2-2ab+b2叫做完全平方式.如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當?shù)捻?,使式子中出現(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.配方法是一種重要的解決問題的數(shù)學方法,不僅可以將一個看似不能分解的多項式分解因式,還能解決一些與非負數(shù)有關的問題或求代數(shù)式的最大值,最小值等.
例如:分解因式:x2+2x-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1);
又例如:求代數(shù)式2x2+4x-6的最小值:∵2x2+4x-6=2(x2+2x-3)=2(x+1)2-8;
又∵(x+1)2≥0
∴當x=-1時,2x2+4x-6有最小值,最小值是-8.
根據(jù)閱讀材料,利用“配方法”,解決下列問題:
(1)分解因式:a2+6a+8=(a+2)(a+4)(a+2)(a+4);
(2)已知實數(shù)a,b滿足a2-8b=12a-b2-52,求2a+b的值;
(3)當x=44、y=-4-4時,多項式-2x2-2xy-y2+8x-7的最大值 99.
【考點】因式分解的應用;非負數(shù)的性質:偶次方.
【答案】(a+2)(a+4);4;-4;9
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/11 8:0:9組卷:549引用:1難度:0.7
相似題
-
1.如果一個自然數(shù)M能分解成a×A,其中a為一位數(shù),A為兩位數(shù),且a與A的十位數(shù)字的和等于A的個位數(shù)字,則稱數(shù)M為“和數(shù)”,將“和數(shù)”分解成M=a×A的過程,稱為“和分解”,若a與A的十位數(shù)字的差等于A的個位數(shù)字,則稱數(shù)M為“差數(shù)”,將“差數(shù)”分解成M=a×A的過程,稱為“差分解”.
例如:∵245=5×49,5+4=9,∴245為“和數(shù)”,
∵205=5×41,5-4=1,∴205為“差數(shù)”.
又如∵195=3×65=5×39,3+6≠5,5+3≠9,且3-6≠5,5-3≠9,∴195既不是“和數(shù)”也不是“差數(shù)”.
(1)判斷236是“和數(shù)”嗎?115是“差數(shù)”嗎?并說明理由;
(2)將一個“和數(shù)”M進行“和分解”,即,(1≤m≤8,1≤a≤8,2≤b≤9,m,a,b都為整數(shù)),將一個“差數(shù)”N進行“差分解”,即M=m×ab,(2≤n≤9,1≤a≤8,1≤c≤8,n,a,c都為整數(shù)),記P(M)=m+a+b,P(N)=n+a+c,若N=n×ac能被3整除,求出所有滿足題意的M的值.P(M)P(N)發(fā)布:2025/6/9 1:30:1組卷:86引用:2難度:0.4 -
2.若實數(shù)x滿足x2-x-1=0,則代數(shù)式x3-2x2+2023的值為 .
發(fā)布:2025/6/9 3:30:1組卷:527引用:6難度:0.6 -
3.若一個四位數(shù)M的百位數(shù)字與千位數(shù)字的差恰好是個位數(shù)字與十位數(shù)字的差的2倍,則將這個四位數(shù)M稱作“星耀重外數(shù)”.
例如:M=2456,∵4-2=2×(6-5),∴2456是“星耀重外數(shù)”;又如M=4325,∵3-4≠2×(5-2),∴4325不是“星耀重外數(shù)”.
(1)判斷2023,5522是否是“星耀重外數(shù)”,并說明理由;
(2)一個“星耀重外數(shù)”M的千位數(shù)字為a,百位數(shù)字為b,十位數(shù)字為c,個位數(shù)字為d,且滿足2≤a≤b<c≤d≤9,記,當G(M)是整數(shù)時,求出所有滿足條件的M.G(M)=49ac-2a+2d+23b-624發(fā)布:2025/6/9 16:0:2組卷:154引用:1難度:0.4